Home
Class 12
MATHS
f(x)={x+1, x<0,x^2, xgeq0 and g(x)={x^3,...

`f(x)={x+1, x<0,x^2, xgeq0` and `g(x)={x^3, x<1, 2x-1, xgeq1` Then find `f(g(x))` and find its domain and range.

Text Solution

AI Generated Solution

To solve the problem, we need to find \( f(g(x)) \) given the functions: - \( f(x) = \begin{cases} x + 1 & \text{if } x < 0 \\ x^2 & \text{if } x \geq 0 \end{cases} \) - \( g(x) = \begin{cases} ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.1|15 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

If f(x)=[|x|+1, x 0

If f(x) = (1 + x)/(1 - x) Prove that ((f(x) f(x^(2)))/(1 + [f(x)]^(2))) = (1)/(2)

If f(x) = |x| + |x-1|-|x-2| , then f(x)

f(x) = |x| + |x-1| at x = 1 .

Discuss the differentiability of f(x)=|x-1|+|x+1|

Draw the graph of f(x)=(x-1) |(x-2)(x-3)| .

Discuss the differentiability of f(x)=|x-1|+|x-2|

The set of points where f(x)=x/(1+|x|) is differentiable is

Evaluate int_1^4 f(x)dx , where f(x)=|x-1|+|x-2|+|x-3|

Minimum value of the function f(x)= (1/x)^(1//x) is: