Home
Class 12
MATHS
If f(x) is a polynomial function satisfy...

If `f(x)` is a polynomial function satisfying `f(x)dotf(1/x)=f(x)+f(1/x)` and `f(4)=65 ,t h e nfin df(6)dot`

Text Solution

Verified by Experts

Polynomial function satisfying
`f(x)*f((1)/(x))=f(x) +f((1)/(x))`
is `f(x)= +-x^(n)+1`
` :. f(4)= +-4^(n)+1=65`
or `4^(n)+1=65`
or `4^(n)=64`
or `n=3`
So, `f(x)=x^(3)=1.`
Hence, `f(6)=6^(3)+1=217`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.1|15 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

If f(x) is a polynomial satisfying f(x)f(1/x)=f(x)+f(1/x)a n df(3)=28 ,t h e nf(4) is equal to 63 (b) 65 (c) 17 (d) none of these

If f(x) is a polynomial function satisfying the condition f(x) .f((1)/(x)) = f(x) + f((1)/(x)) and f(2) = 9 then

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))dot

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))dot

Let f(x) be a polynomial function satisfying f(x)+f((1)/(x))=f(x)f((1)/(x))" for all "xne0. If f(5)=126" and a,b,c are in G.P., then"f'(a),f'(b),f'(c) are in

let f(x) be a polynomial satisfying f(x) : f(1/x) = f(x) + f(1/x) for all X in R :- {O} and f(5) =126, then find f(3).

Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) then f(4) equals

Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) then f(4) equals

If f: R^+rarrR^+ is a polynomial function satisfying the functional equation f(f(x))=6x-f(x),t h e nf(17) is equal to 17 (b) 51 (c) 34 (d) -34

A polynomial function f(x) satisfies the condition f(x)f((1)/(x))=f(x)+f((1)/(x)) . If f(10)=1001, then f(20)=