Home
Class 12
MATHS
Let f(x)=(9^x)/(9^x+3) . Show f(x)+f(1-x...

Let `f(x)=(9^x)/(9^x+3)` . Show `f(x)+f(1-x)=1` and, hence, evaluate. `f(1/(1996))+f(2/(1996))+f(3/(1996))++f((1995)/(1996))`

Text Solution

Verified by Experts

`f(x)=(9^(x))/(9^(x)+3) " (1)" `
and `f(1-x)=(9^(1-x))/(9^(1-x)+3).`
or `f(1-x)=((9)/(9^(x)))/((9)/(9^(x))+3)=(9)/(9+3.9^(x))`
or `f(1-x)=(3)/((3+9^(x))) " (2)" `
Adding (1) and (2), we get
`f(x)+f(1-x)=(9^(x))/(9^(x)+3)+(3)/((3+9^(x)))=1`
or `f(x)+f(1-x)=1 " (3)" `
Now putting `x=(1)/(1996),(2)/(1996),(3)/(1996), ..., (998)/(1996) ` in (3) we get
`f((1)/(1996))+f((1995)/(1996))=1, f((2)/(1996))+f((1994)/(1996))=1,`
`f((3)/(1996))+f((1993)/(1996))=1`
` " " vdots`
`f((997)/(1996))+f((999)/(1996))=1, f((998)/(1996))+f((998)/(1996))=1`
` :. f((998)/(1996))=(1)/(2)`
Adding all the above expressions, we get
`f((1)/(1996))+f((2)/(1996))+ ... +f((1995)/(1996))`
` = (1+1+1+ ... +997" times")+(1)/(2)`
`=997+(1)/(2)=997.5`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.1|15 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x^3-1/(x^3) , show that f(x)+f(1/x)=0.

Let f(x)=x^(2)-2xandg(x)=f(f(x)-1)+f(5-f(x)), then

For x in R , x ne0, 1, let f_(0)(x)=(1)/(1-x) and f_(n+1)(x)=f_(0)(f_(n)(x)),n=0,1,2….. Then the value of f_(100)(3)+f_(1)((2)/(3))+f_(2)((3)/(2)) is equal to

If f(x) = (x^2 + 9)/(sqrt(x-3)) find f(4) + f(5)

If f(x)=2x-1, find the value of x that makes f(f(x))=9.

Let f : W-> W be a given function satisfying f(x) = f(x-1)+f(x-2) for x<=2 .If f(0)=0 and f(1)=1 , ther find the value of f(2) + f(3) + f(4) + f(5) + f(6) .

If f(x)=|x| then show that f'(3) =1

f(x) = 9^x/ ( 9 + 9^x) then value of f(1/2015) + f(2/2015) .......+ f(4029/2015)

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :