Home
Class 12
MATHS
Consider a real-valued function f(x) sat...

Consider a real-valued function f(x) satisfying `2f(x y)=(f(x))^y+(f(y))^xAAx , y in Ra n df(1)=a ,w h e r ea!=1.` Prove that `(a-1)` `sum_(i=1)^nf(i)=a^(n+1)-a`

Text Solution

Verified by Experts

We have `2f(xy)=(f(x))^(y)+(f(y))^(x)`.
Replacing y by 1, we get
`2f(x)=f(x)+(f(1))^(x) " or " f(x)=a^(x)`
or `sum_(i=1)^(n)f(i)=a+a^(2)+ ...+a^(n)=(a^(n+1)-a)/(a-1)`
or `(a-1)sum_(i=1)^(n)f(i)=a^(n+1)-a`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.1|15 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let a real valued function f satisfy f(x + y) = f(x)f(y)AA x, y in R and f(0)!=0 Then g(x)=f(x)/(1+[f(x)]^2) is

If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (y) for all x,y in R then f(x) is

Let f be a real valued function satisfying f(x+y)=f(x)+f(y) for all x, y in R and f(1)=2 . Then sum_(k=1)^(n)f(k)=

Let f be a real valued function satisfying 2f(xy) = {f(x)}^(y) + {f(y)}^(x), AA x, y in R and f(1) = 2, then find underset(K = 1)overset(2008)sum f(K)

If a function satisfies (x-y)f(x+y)-(x+y)f(x-y)=2(x^2 y-y^3) AA x, y in R and f(1)=2 , then

Let f be a real valued function satisfying f(x+y)=f(x)f(y) for all x, y in R such that f(1)=2 . Then , sum_(k=1)^(n) f(k)=

Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA , x,y in R, y!=0 and f(1)!=0 , f'(1)=3 then

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

Le the be a real valued functions satisfying f(x+1) + f(x-1) = 2 f(x) for all x, y in R and f(0) = 0 , then for any n in N , f(n) =

Let f be a function satisfying f(x+y)=f(x) + f(y) for all x,y in R . If f (1)= k then f(n), n in N is equal to