Home
Class 12
MATHS
Solve ((2x+3)(4-3x)^3(x-4))/((x-2)^2x^5)...

Solve `((2x+3)(4-3x)^3(x-4))/((x-2)^2x^5)le0 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(\frac{(2x+3)(4-3x)^3(x-4)}{(x-2)^2x^5} \leq 0\), we will follow these steps: ### Step 1: Identify the critical points The critical points occur where the numerator is zero or the denominator is zero. 1. **Numerator**: Set each factor to zero: - \(2x + 3 = 0 \Rightarrow x = -\frac{3}{2}\) - \(4 - 3x = 0 \Rightarrow x = \frac{4}{3}\) - \(x - 4 = 0 \Rightarrow x = 4\) 2. **Denominator**: Set each factor to zero: - \((x - 2)^2 = 0 \Rightarrow x = 2\) - \(x^5 = 0 \Rightarrow x = 0\) Thus, the critical points are: - From the numerator: \(x = -\frac{3}{2}, \frac{4}{3}, 4\) - From the denominator: \(x = 0, 2\) ### Step 2: Create a number line Plot the critical points on a number line: \[ -\infty, -\frac{3}{2}, 0, \frac{4}{3}, 2, 4, +\infty \] ### Step 3: Test intervals We will test each interval defined by the critical points to determine where the function is negative or zero. 1. **Interval \((- \infty, -\frac{3}{2})\)**: Choose \(x = -2\) \[ \frac{(2(-2)+3)(4-3(-2))^3(-2-4)}{((-2)-2)^2(-2)^5} = \frac{(-4+3)(4+6)^3(-6)}{(4)(-32)} = \frac{(-1)(10^3)(-6)}{(4)(-32)} > 0 \] 2. **Interval \((- \frac{3}{2}, 0)\)**: Choose \(x = -1\) \[ \frac{(2(-1)+3)(4-3(-1))^3(-1-4)}{((-1)-2)^2(-1)^5} = \frac{(1)(7^3)(-5)}{(9)(-1)} < 0 \] 3. **Interval \((0, \frac{4}{3})\)**: Choose \(x = 1\) \[ \frac{(2(1)+3)(4-3(1))^3(1-4)}{((1)-2)^2(1)^5} = \frac{(5)(1^3)(-3)}{(1)(1)} < 0 \] 4. **Interval \((\frac{4}{3}, 2)\)**: Choose \(x = 1.5\) \[ \frac{(2(1.5)+3)(4-3(1.5))^3(1.5-4)}{((1.5)-2)^2(1.5)^5} = \frac{(6)(-0.5^3)(-2.5)}{(0.25)(7.59)} > 0 \] 5. **Interval \((2, 4)\)**: Choose \(x = 3\) \[ \frac{(2(3)+3)(4-3(3))^3(3-4)}{((3)-2)^2(3)^5} = \frac{(9)(-5^3)(-1)}{(1)(243)} < 0 \] 6. **Interval \((4, +\infty)\)**: Choose \(x = 5\) \[ \frac{(2(5)+3)(4-3(5))^3(5-4)}{((5)-2)^2(5)^5} = \frac{(13)(-11^3)(1)}{(9)(3125)} < 0 \] ### Step 4: Combine results From our tests, we find: - The function is negative or zero in the intervals: - \((- \frac{3}{2}, 0)\) - \((0, \frac{4}{3})\) - \((2, 4)\) - \((4, +\infty)\) ### Step 5: Include critical points We include points where the function is zero: - \(x = -\frac{3}{2}, \frac{4}{3}, 4\) (from the numerator) - Exclude \(x = 0, 2\) (from the denominator) ### Final Solution The solution set for the inequality \(\frac{(2x+3)(4-3x)^3(x-4)}{(x-2)^2x^5} \leq 0\) is: \[ x \in \left(-\frac{3}{2}, 0\right) \cup \left(0, \frac{4}{3}\right) \cup (2, 4] \cup (4, +\infty) \]

To solve the inequality \(\frac{(2x+3)(4-3x)^3(x-4)}{(x-2)^2x^5} \leq 0\), we will follow these steps: ### Step 1: Identify the critical points The critical points occur where the numerator is zero or the denominator is zero. 1. **Numerator**: Set each factor to zero: - \(2x + 3 = 0 \Rightarrow x = -\frac{3}{2}\) - \(4 - 3x = 0 \Rightarrow x = \frac{4}{3}\) ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.2|5 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.3|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Solve ((x-5)^(2)(x+2)^(3)(x-4))/((x-3)^(4))le0

Solve ((x-3)(x+5)(x-7))/(|x-4|(x+6))le0

Solve: ((5x-3))/6-((2x-1))/3=((4-3x))/2

Solve (x(3-4x)(x+1))/(2x-5)lt 0

Solve (x(3-4x)(x+1))/(2x-5)lt 0

Solve x^(4)-3x^(2)+2=0 .

" Solve : (3x)/(4)-(2x+5)/(3)=(5)/(2)

The number of integral solution of (x^(2)(3x-4)^(3)(x-2)^(4))/(In(2x-1)(x-5)^(5)(2x-7)^(6))le 0 is :

Solve x(x+2)^2(x-1)^5(2x-3)(x-3)^4geq0.

Solve x(x+2)^2(x-1)^5(2x-3)(x-3)^4geq0.