Home
Class 12
MATHS
Solve (5x+1)/((x+1)^2) - 1 < 0...

Solve ` (5x+1)/((x+1)^2)` - 1 < 0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(\frac{5x + 1}{(x + 1)^2} - 1 < 0\), we will follow these steps: ### Step 1: Rewrite the Inequality Start by rewriting the inequality: \[ \frac{5x + 1}{(x + 1)^2} - 1 < 0 \] This can be rewritten as: \[ \frac{5x + 1 - (x + 1)^2}{(x + 1)^2} < 0 \] ### Step 2: Expand the Expression Now, expand \((x + 1)^2\): \[ (x + 1)^2 = x^2 + 2x + 1 \] Substituting this back into the inequality gives: \[ \frac{5x + 1 - (x^2 + 2x + 1)}{(x + 1)^2} < 0 \] ### Step 3: Simplify the Numerator Now simplify the numerator: \[ 5x + 1 - x^2 - 2x - 1 = -x^2 + 3x \] Thus, the inequality becomes: \[ \frac{-x^2 + 3x}{(x + 1)^2} < 0 \] ### Step 4: Factor the Numerator Factor out the negative sign from the numerator: \[ \frac{-x(x - 3)}{(x + 1)^2} < 0 \] This can be rewritten as: \[ \frac{x(x - 3)}{(x + 1)^2} > 0 \] ### Step 5: Identify Critical Points Now, identify the critical points where the expression is zero or undefined: - The numerator \(x(x - 3) = 0\) gives \(x = 0\) and \(x = 3\). - The denominator \((x + 1)^2 = 0\) gives \(x = -1\) (undefined). ### Step 6: Test Intervals Now we will test the intervals determined by the critical points: - \((-∞, -1)\) - \((-1, 0)\) - \((0, 3)\) - \((3, ∞)\) 1. **Interval \((-∞, -1)\)**: Choose \(x = -2\): \[ \frac{-2(-2 - 3)}{(-2 + 1)^2} = \frac{-2 \cdot -5}{1} = 10 > 0 \] 2. **Interval \((-1, 0)\)**: Choose \(x = -0.5\): \[ \frac{-0.5(-0.5 - 3)}{(-0.5 + 1)^2} = \frac{-0.5 \cdot -3.5}{0.25} = 7 > 0 \] 3. **Interval \((0, 3)\)**: Choose \(x = 1\): \[ \frac{1(1 - 3)}{(1 + 1)^2} = \frac{1 \cdot -2}{4} = -0.5 < 0 \] 4. **Interval \((3, ∞)\)**: Choose \(x = 4\): \[ \frac{4(4 - 3)}{(4 + 1)^2} = \frac{4 \cdot 1}{25} = 0.16 > 0 \] ### Step 7: Combine Results The expression is positive in the intervals \((-∞, -1)\), \((-1, 0)\), and \((3, ∞)\), and negative in the interval \((0, 3)\). ### Step 8: Write the Solution Since we are looking for where the expression is greater than zero: \[ x \in (-\infty, -1) \cup (-1, 0) \cup (3, \infty) \]

To solve the inequality \(\frac{5x + 1}{(x + 1)^2} - 1 < 0\), we will follow these steps: ### Step 1: Rewrite the Inequality Start by rewriting the inequality: \[ \frac{5x + 1}{(x + 1)^2} - 1 < 0 \] This can be rewritten as: ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.2|5 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.3|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Solve (5x+1)/((x+1)^2)lt 1

Solve : (x-1)/(x-2) gt1

Solve: (5x-1)/(x+2)<0.

Solve (|x-1|)/(x+2) gt 1

Solve : (5x)/(4)gt (4x-1)/(3) and 4x + 3 lt (2x + 1)/(3)

Solve : log_(5)(x + 1) - 1 = 1 + log_(5)(x - 1) .

Solve (x^(3))/((2x-1)(x-1)^(2))

Solve for x : 2^(5x - 1) = 4 xx 2^(3x + 1)

Solve : (5x)/(4)-1 le (4x-1)/(3)

Solve: 2/(5x)-5/(3x)=1/(15)