Home
Class 12
MATHS
Find all possible values of expression ...

Find all possible values of expression `sqrt(1-sqrt(x^(2)-6x+9)).`

Text Solution

AI Generated Solution

The correct Answer is:
To find all possible values of the expression \( \sqrt{1 - \sqrt{x^2 - 6x + 9}} \), we can follow these steps: ### Step 1: Simplify the expression inside the square root We start with the expression: \[ \sqrt{1 - \sqrt{x^2 - 6x + 9}} \] Notice that \( x^2 - 6x + 9 \) can be factored: \[ x^2 - 6x + 9 = (x - 3)^2 \] Thus, we can rewrite the expression as: \[ \sqrt{1 - \sqrt{(x - 3)^2}} \] ### Step 2: Simplify the square root of the square The square root of a square can be expressed in terms of absolute value: \[ \sqrt{(x - 3)^2} = |x - 3| \] Now, substituting this back into the expression gives us: \[ \sqrt{1 - |x - 3|} \] ### Step 3: Determine the range of the expression For the expression \( \sqrt{1 - |x - 3|} \) to be defined, the term inside the square root must be non-negative: \[ 1 - |x - 3| \geq 0 \] This simplifies to: \[ |x - 3| \leq 1 \] ### Step 4: Solve the absolute value inequality The inequality \( |x - 3| \leq 1 \) means that: \[ -1 \leq x - 3 \leq 1 \] Adding 3 to all parts of the inequality gives: \[ 2 \leq x \leq 4 \] ### Step 5: Determine the possible values of the original expression Now, we need to find the possible values of \( \sqrt{1 - |x - 3|} \) for \( x \) in the interval \( [2, 4] \). - When \( x = 2 \): \[ |2 - 3| = 1 \implies \sqrt{1 - 1} = \sqrt{0} = 0 \] - When \( x = 3 \): \[ |3 - 3| = 0 \implies \sqrt{1 - 0} = \sqrt{1} = 1 \] - When \( x = 4 \): \[ |4 - 3| = 1 \implies \sqrt{1 - 1} = \sqrt{0} = 0 \] ### Step 6: Conclusion The expression \( \sqrt{1 - |x - 3|} \) takes values from 0 to 1 as \( x \) varies from 2 to 4. Therefore, the possible values of the expression \( \sqrt{1 - \sqrt{x^2 - 6x + 9}} \) are: \[ [0, 1] \]

To find all possible values of the expression \( \sqrt{1 - \sqrt{x^2 - 6x + 9}} \), we can follow these steps: ### Step 1: Simplify the expression inside the square root We start with the expression: \[ \sqrt{1 - \sqrt{x^2 - 6x + 9}} \] Notice that \( x^2 - 6x + 9 \) can be factored: ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.2|5 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.3|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find all the possible values of the expression sqrt(x^2-4) .

Find all possible values of expressions (2+x^2)/(4-x^2)

Find all possible values of expressions (2+x^2)/(4-x^2)

Find all the possible values of the expression: 1/(x^2+2)

Find all possible values of sqrt(i)+sqrt(-i)dot

Find all possible values of sqrt(|x|-2) .

Find all possible values of sqrt(i)+sqrt(-i)dot .

Find all possible values of the following expressions : (i) sqrt(x^(2)-4) (ii) sqrt(9-x^(2)) (iii) sqrt(x^(2)-2x+10)

Find all the possible values of expression : ( |x|)/(x) + (|y|)/y

Find all possible values of (x^2+1)/(x^2-2) .