Home
Class 12
MATHS
Find the range of f(x)=(x^2+34 x-71)/(x^...

Find the range of `f(x)=(x^2+34 x-71)/(x^2+2x-7)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \frac{x^2 + 34x - 71}{x^2 + 2x - 7} \), we can follow these steps: ### Step 1: Set the function equal to \( y \) Assume \( f(x) = y \): \[ y = \frac{x^2 + 34x - 71}{x^2 + 2x - 7} \] ### Step 2: Cross-multiply to eliminate the fraction Rearranging gives: \[ y(x^2 + 2x - 7) = x^2 + 34x - 71 \] This leads to: \[ yx^2 + 2yx - 7y = x^2 + 34x - 71 \] ### Step 3: Rearrange the equation Rearranging the equation, we have: \[ (y - 1)x^2 + (2y - 34)x + (7y - 71) = 0 \] ### Step 4: Analyze the discriminant For \( x \) to have real values, the discriminant \( D \) of this quadratic must be greater than or equal to zero: \[ D = (2y - 34)^2 - 4(y - 1)(7y - 71) \geq 0 \] ### Step 5: Expand the discriminant Expanding the discriminant: \[ D = (2y - 34)^2 - 4[(y - 1)(7y - 71)] \] Calculating \( (2y - 34)^2 \): \[ = 4y^2 - 136y + 1156 \] Calculating \( 4(y - 1)(7y - 71) \): \[ = 4(7y^2 - 71y - 7y + 71) = 4(7y^2 - 78y + 71) = 28y^2 - 312y + 284 \] Now substituting back into the discriminant: \[ D = 4y^2 - 136y + 1156 - (28y^2 - 312y + 284) \] Combining like terms: \[ D = 4y^2 - 28y^2 + 312y - 136y + 1156 - 284 \] \[ D = -24y^2 + 176y + 872 \] ### Step 6: Set the discriminant greater than or equal to zero Now we need to solve: \[ -24y^2 + 176y + 872 \geq 0 \] Dividing the entire inequality by -1 (which flips the inequality sign): \[ 24y^2 - 176y - 872 \leq 0 \] ### Step 7: Find the roots of the quadratic Using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 24, b = -176, c = -872 \): \[ y = \frac{176 \pm \sqrt{(-176)^2 - 4 \cdot 24 \cdot (-872)}}{2 \cdot 24} \] Calculating the discriminant: \[ = 30976 + 83712 = 114488 \] Now calculating the roots: \[ y = \frac{176 \pm \sqrt{114488}}{48} \] ### Step 8: Approximate the roots Calculating \( \sqrt{114488} \approx 338.5 \): \[ y_1 = \frac{176 + 338.5}{48} \approx 10.7, \quad y_2 = \frac{176 - 338.5}{48} \approx -3.4 \] ### Step 9: Determine the intervals The quadratic \( 24y^2 - 176y - 872 \) opens upwards (since the coefficient of \( y^2 \) is positive). Thus, the function is less than or equal to zero between the roots: \[ y \in [-3.4, 10.7] \] ### Conclusion The range of \( f(x) \) is: \[ \text{Range of } f(x) = (-\infty, -3.4] \cup [10.7, \infty) \]

To find the range of the function \( f(x) = \frac{x^2 + 34x - 71}{x^2 + 2x - 7} \), we can follow these steps: ### Step 1: Set the function equal to \( y \) Assume \( f(x) = y \): \[ y = \frac{x^2 + 34x - 71}{x^2 + 2x - 7} \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.6|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.7|5 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.4|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find the rang of f(x)=(x^2+34 x-71)/(x^2+2x-7) f(x)=(x^2-x+1)/(x^2+x+1)

Find the range of f(x)=x^2-x-3.

Find the range of f(x)=x^2-x-3.

Find the range of f(x)=x^2-x-3.

Find the range of f(x)=(x^2-x+1)/(x^2+x+1)

Find the range of f(x)=(x^2-x+1)/(x^2+x+1)

Find the range of f(x)=|x^(2)-3x+2|

Find the range of f(x)=(x^(2)+x+1)/(x^(2)+x-1)

Find the range of f(x)=(x^2+1)/(x^2+2)

Find the range of f(x)=(x^(2)+14x+9)/(x^(2)+2x+3) , where x in R.