Home
Class 12
MATHS
Find the range of f(x)=sec(pi/4cos^2x), ...

Find the range of `f(x)=sec(pi/4cos^2x),` where `-oo < x < oo

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sec\left(\frac{\pi}{4} \cos^2 x\right) \) for \( -\infty < x < \infty \), we can follow these steps: ### Step 1: Determine the range of \( \cos^2 x \) The function \( \cos^2 x \) oscillates between 0 and 1 for all real values of \( x \). Therefore, we have: \[ 0 \leq \cos^2 x \leq 1 \] ### Step 2: Scale by \( \frac{\pi}{4} \) Next, we multiply the entire inequality by \( \frac{\pi}{4} \): \[ 0 \leq \frac{\pi}{4} \cos^2 x \leq \frac{\pi}{4} \] ### Step 3: Apply the secant function Now, we apply the secant function to the entire inequality. Recall that \( \sec(\theta) = \frac{1}{\cos(\theta)} \). The secant function is defined for all angles except where the cosine is zero. Since \( \frac{\pi}{4} \cos^2 x \) will always be in the range \( [0, \frac{\pi}{4}] \), we can find the secant values: \[ \sec(0) \leq \sec\left(\frac{\pi}{4} \cos^2 x\right) \leq \sec\left(\frac{\pi}{4}\right) \] ### Step 4: Calculate the secant values Calculating the values: - \( \sec(0) = 1 \) - \( \sec\left(\frac{\pi}{4}\right) = \sec\left(45^\circ\right) = \sqrt{2} \) Thus, we have: \[ 1 \leq \sec\left(\frac{\pi}{4} \cos^2 x\right) \leq \sqrt{2} \] ### Step 5: Conclusion on the range From the above inequalities, we can conclude that the range of the function \( f(x) \) is: \[ [1, \sqrt{2}] \] ### Final Answer The range of \( f(x) = \sec\left(\frac{\pi}{4} \cos^2 x\right) \) is \( [1, \sqrt{2}] \). ---

To find the range of the function \( f(x) = \sec\left(\frac{\pi}{4} \cos^2 x\right) \) for \( -\infty < x < \infty \), we can follow these steps: ### Step 1: Determine the range of \( \cos^2 x \) The function \( \cos^2 x \) oscillates between 0 and 1 for all real values of \( x \). Therefore, we have: \[ 0 \leq \cos^2 x \leq 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.7|5 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.8|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.5|5 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x)=cos^2x+sec^2x .

Find the range of f(x)=cos^4x+sin^2x-1 .

Find the range of f(x)=cosec^2x+25sec^2x .

Find the range of f(x) = cos^(-1) x + cot^(-1) x

If 0lt=xlt=pi/3 then range of f(x)=sec(pi/6-x)+sec(pi/6+x) is

Consider function f(x) = sin^(-1) (sin x) + cos^(-1) (cos x), x in [0, 2pi] (a) Draw the graph of y = f (x) (b) Find the range of f(x) (c) Find the area bounded by y = f(x) and x-axis

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

Find the range of the function f(x)=4cos^(3)x-8cos(2)x+1 .

find the range of function f(x)=sin(x+(pi)/(6))+cos(x-(pi)/(6))

find the range of function f(x)=sin(x+(pi)/(6))+cos(x-(pi)/(6))