Home
Class 12
MATHS
Find the range of f(x)=1/(1-3sqrt(1-sin^...

Find the range of `f(x)=1/(1-3sqrt(1-sin^2x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \frac{1}{1 - 3\sqrt{1 - \sin^2 x}} \), we can follow these steps: ### Step 1: Rewrite the function We start by rewriting \( \sqrt{1 - \sin^2 x} \) as \( \cos x \): \[ f(x) = \frac{1}{1 - 3\sqrt{1 - \sin^2 x}} = \frac{1}{1 - 3\cos x} \] ### Step 2: Determine the range of \( \cos x \) The cosine function \( \cos x \) oscillates between -1 and 1. Therefore, we have: \[ -1 \leq \cos x \leq 1 \] ### Step 3: Transform the range of \( \cos x \) to \( 3\cos x \) Multiplying the entire inequality by 3, we get: \[ -3 \leq 3\cos x \leq 3 \] ### Step 4: Adjust the inequality for \( 1 - 3\cos x \) Next, we adjust the inequality to find the range of \( 1 - 3\cos x \): \[ 1 - 3 \leq 1 - 3\cos x \leq 1 + 3 \] This simplifies to: \[ -2 \leq 1 - 3\cos x \leq 4 \] ### Step 5: Find the reciprocal to determine the range of \( f(x) \) Now we need to find the range of \( f(x) = \frac{1}{1 - 3\cos x} \). We will consider the values of \( 1 - 3\cos x \) in the intervals we found: 1. When \( 1 - 3\cos x = -2 \), \( f(x) = \frac{1}{-2} = -\frac{1}{2} \). 2. When \( 1 - 3\cos x = 4 \), \( f(x) = \frac{1}{4} \). ### Step 6: Analyze the behavior of \( f(x) \) We need to analyze the behavior of \( f(x) \) as \( 1 - 3\cos x \) approaches its limits: - As \( 1 - 3\cos x \) approaches -2 from the right, \( f(x) \) approaches -\(\frac{1}{2}\). - As \( 1 - 3\cos x \) approaches 0 (which happens when \( \cos x = \frac{1}{3} \)), \( f(x) \) approaches \( +\infty \). - As \( 1 - 3\cos x \) approaches 4, \( f(x) \) approaches \( \frac{1}{4} \). ### Step 7: Combine the results Thus, the range of \( f(x) \) can be expressed as: \[ (-\infty, -\frac{1}{2}) \cup \left(\frac{1}{4}, \infty\right) \] ### Final Answer The range of the function \( f(x) = \frac{1}{1 - 3\sqrt{1 - \sin^2 x}} \) is: \[ (-\infty, -\frac{1}{2}) \cup \left(\frac{1}{4}, \infty\right) \]

To find the range of the function \( f(x) = \frac{1}{1 - 3\sqrt{1 - \sin^2 x}} \), we can follow these steps: ### Step 1: Rewrite the function We start by rewriting \( \sqrt{1 - \sin^2 x} \) as \( \cos x \): \[ f(x) = \frac{1}{1 - 3\sqrt{1 - \sin^2 x}} = \frac{1}{1 - 3\cos x} \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.7|5 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.8|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.5|5 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x)=|x-1|-1

Find the range of f(x)=sqrt(4-sqrt(1+tan^2x)) .

Find the range of f(x)=sqrt(1-sqrt(x^2-6x+9))

Find the rang of f(x)=sqrt(sin^2x-6sinx+9)+3

Find the range of f(x)=cos^(-1)((sqrt(1+2x^2))/(1+x^2))

Find the range of f(x)=sqrt(sin^2x-6sinx+9)+3 .

Find the range of f(x) = sqrt(x-1)+sqrt(5-x)

Find the range of f(x)=sqrt(x-1)+sqrt(5-x)

Find the range of f(x)=tan^(-1)sqrt((x^2-2x+2))

Find the range of f(x)=tan^(-1)sqrt((x^2-2x+2))