Home
Class 12
MATHS
Find the domain and range of f(x)=sin...

Find the domain and range of
`f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x.`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain and range of the function \( f(x) = \sin^{-1}x + \tan^{-1}x + \sec^{-1}x \), we will analyze each component of the function separately. ### Step 1: Determine the domain of each function component 1. **Domain of \( \sin^{-1}x \)**: - The domain of \( \sin^{-1}x \) is \( x \in [-1, 1] \). 2. **Domain of \( \tan^{-1}x \)**: - The domain of \( \tan^{-1}x \) is \( x \in (-\infty, \infty) \) (all real numbers). 3. **Domain of \( \sec^{-1}x \)**: - The domain of \( \sec^{-1}x \) is \( x \in (-\infty, -1] \cup [1, \infty) \). ### Step 2: Find the overall domain of \( f(x) \) To find the overall domain of \( f(x) \), we take the intersection of the domains of all three functions: - The intersection of \( [-1, 1] \) (from \( \sin^{-1}x \)), \( (-\infty, \infty) \) (from \( \tan^{-1}x \)), and \( (-\infty, -1] \cup [1, \infty) \) (from \( \sec^{-1}x \)) gives us: \[ \text{Domain of } f(x) = [-1, -1] \cup [1, 1] = \{-1, 1\} \] ### Step 3: Evaluate \( f(x) \) at the endpoints of the domain 1. **Calculate \( f(-1) \)**: \[ f(-1) = \sin^{-1}(-1) + \tan^{-1}(-1) + \sec^{-1}(-1) \] - \( \sin^{-1}(-1) = -\frac{\pi}{2} \) - \( \tan^{-1}(-1) = -\frac{\pi}{4} \) - \( \sec^{-1}(-1) = \pi \) Therefore, \[ f(-1) = -\frac{\pi}{2} - \frac{\pi}{4} + \pi = \frac{\pi}{4} \] 2. **Calculate \( f(1) \)**: \[ f(1) = \sin^{-1}(1) + \tan^{-1}(1) + \sec^{-1}(1) \] - \( \sin^{-1}(1) = \frac{\pi}{2} \) - \( \tan^{-1}(1) = \frac{\pi}{4} \) - \( \sec^{-1}(1) = 0 \) Therefore, \[ f(1) = \frac{\pi}{2} + \frac{\pi}{4} + 0 = \frac{3\pi}{4} \] ### Step 4: Determine the range of \( f(x) \) The values of \( f(x) \) at the endpoints of the domain are: - \( f(-1) = \frac{\pi}{4} \) - \( f(1) = \frac{3\pi}{4} \) Thus, the range of \( f(x) \) is: \[ \text{Range of } f(x) = \left[\frac{\pi}{4}, \frac{3\pi}{4}\right] \] ### Final Answer - **Domain**: \(\{-1, 1\}\) - **Range**: \(\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]\)

To find the domain and range of the function \( f(x) = \sin^{-1}x + \tan^{-1}x + \sec^{-1}x \), we will analyze each component of the function separately. ### Step 1: Determine the domain of each function component 1. **Domain of \( \sin^{-1}x \)**: - The domain of \( \sin^{-1}x \) is \( x \in [-1, 1] \). 2. **Domain of \( \tan^{-1}x \)**: ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.8|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.9|13 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.6|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is

Find the domain and range of f(x)=|x-1|

Find the domain and range of f(x)=|x-1|

Find the domain and range of f(x)=(1)/(2-sin3x).

Range of f(x)=sin^(- 1)x+sec^(- 1)x is

Find the domain and range of f(x)=(x)/(1+x^(2))

Find the range of f(x) = sin^(-1) x + tan^(-1) x + cos^(-1) x

Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)xdot

Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)xdot

Find the domain and range of f(x)=(1)/(sqrt(x-2))