Home
Class 12
MATHS
Find the range of f(x)=(log)2((sinx-cos...

Find the range of `f(x)=(log)_2((sinx-cosx+3sqrt(2))/(sqrt(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \log_2\left(\frac{\sin x - \cos x + 3\sqrt{2}}{\sqrt{2}}\right) \), we will follow these steps: ### Step 1: Determine the range of \( \sin x - \cos x \) The expression \( \sin x - \cos x \) can be rewritten using the identity \( \sin x - \cos x = \sqrt{2}\sin\left(x - \frac{\pi}{4}\right) \). The range of \( \sin\left(x - \frac{\pi}{4}\right) \) is from -1 to 1. Therefore, the range of \( \sin x - \cos x \) is: \[ -\sqrt{2} \leq \sin x - \cos x \leq \sqrt{2} \] ### Step 2: Shift the range by adding \( 3\sqrt{2} \) Next, we add \( 3\sqrt{2} \) to the entire range: \[ -\sqrt{2} + 3\sqrt{2} \leq \sin x - \cos x + 3\sqrt{2} \leq \sqrt{2} + 3\sqrt{2} \] This simplifies to: \[ 2\sqrt{2} \leq \sin x - \cos x + 3\sqrt{2} \leq 4\sqrt{2} \] ### Step 3: Divide the entire range by \( \sqrt{2} \) Now, we divide the entire inequality by \( \sqrt{2} \): \[ \frac{2\sqrt{2}}{\sqrt{2}} \leq \frac{\sin x - \cos x + 3\sqrt{2}}{\sqrt{2}} \leq \frac{4\sqrt{2}}{\sqrt{2}} \] This simplifies to: \[ 2 \leq \frac{\sin x - \cos x + 3\sqrt{2}}{\sqrt{2}} \leq 4 \] ### Step 4: Apply the logarithm Now we take the logarithm base 2 of the entire inequality: \[ \log_2(2) \leq \log_2\left(\frac{\sin x - \cos x + 3\sqrt{2}}{\sqrt{2}}\right) \leq \log_2(4) \] This gives us: \[ 1 \leq f(x) \leq 2 \] ### Conclusion: Range of \( f(x) \) Thus, the range of \( f(x) \) is: \[ [1, 2] \]

To find the range of the function \( f(x) = \log_2\left(\frac{\sin x - \cos x + 3\sqrt{2}}{\sqrt{2}}\right) \), we will follow these steps: ### Step 1: Determine the range of \( \sin x - \cos x \) The expression \( \sin x - \cos x \) can be rewritten using the identity \( \sin x - \cos x = \sqrt{2}\sin\left(x - \frac{\pi}{4}\right) \). The range of \( \sin\left(x - \frac{\pi}{4}\right) \) is from -1 to 1. Therefore, the range of \( \sin x - \cos x \) is: \[ -\sqrt{2} \leq \sin x - \cos x \leq \sqrt{2} ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.9|13 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.10|6 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.7|5 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x)=sqrt(log(cos(sinx)))

Find the range of f(x)=sin^2x-3sinx+2

Find the range of f(x) =sin^2x-3sinx+2 .

Find the range of following functions f(x)=log_(2)((sinx-cosx+3sqrt2)/(sqrt2))

The range of f(x)=log_sqrt5 (sqrt2(sinx-cosx)+3) is

Find the rang of f(x)=sqrt(sin^2x-6sinx+9)+3

Find the range of f(x)=sqrt(sin^2x-6sinx+9)+3 .

Find the range of f(x)=1/((cosx-3)^2+(sinx+4)^2)

Find the range of f(x)=1/((cosx-3)^2+(sinx+4)^2)

Find the range of f(x)=(2sin^2x+2sinx+3)/(sin^2x+sinx+1)