Home
Class 12
MATHS
Find the value of x in [-pi,pi] for whic...

Find the value of `x` in `[-pi,pi]` for which `f(x)=sqrt((log)_2(4sin^2x-2sqrt(3)sinx-2sinx+sqrt(3)+1))` is defined.

Text Solution

Verified by Experts

The correct Answer is:
`x in [-pi,(pi)/(6)] cup [(pi)/(3),(2pi)/(3)] cup [(5pi)/(6),pi]`

`f(x)=sqrt(log_(2)(4sin^(2)x-2sqrt(3)sinx-2sinx+sqrt(3)+1))` is defined if
`log_(2)(4sin^(2)x-2sqrt(3)sinx-2sinx+sqrt(3)+1) ge 0`
or `4sin^(2)x-2sinx(sqrt(3)+1)+sqrt(3)+1 ge 1`
or ` sin^(2)x-sinx ((sqrt(3))/(2)+(1)/(2)) +(sqrt(3))/(4) ge 0`
or ` (sinx-(sqrt(3))/(2)))(sinx-(1)/(2)) ge 0`
i.e., `-1 le sinx le (1)/(2) " or " (sqrt(3))/(2) le sinx le 1`
or `x in [-pi,(pi)/(6)] cup [(pi)/(3),(2pi)/(3)] cup [(5pi)/(6),pi]`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.9|13 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.10|6 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.7|5 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find the value of x in the interval [-pi/2,(3pi)/2\ ] for which sqrt(2)sin2x+1lt=2sinx+sqrt(2\ )cosx

Find the value of x for which f(x)=sqrt(sinx-cosx) is defined, x in [0,2pi)dot

Find the range of f(x)=(log)_2((sinx-cosx+3sqrt(2))/(sqrt(2)))

Find the range of f(x)=(log)_2((sinx-cosx+3sqrt(2))/(sqrt(2)))

f(x)=sqrt(-x^(2)+4x-3)+sqrt(sin""pi/2(sin""pi/2(x-1)))

Find the range of following functions f(x)=log_(2)((sinx-cosx+3sqrt2)/(sqrt2))

For x in (-pi, pi) find the value of x for which the given equation (sqrt 3 sin x + cos x)^(sqrt(sqrt3 sin 2 x-cos 2 x+2))=4 is satisfied.

The value of x in (0,pi/2) satisfying (sqrt(3)-1)/(sinx)+(sqrt(3)+1)/(cosx)=4sqrt(2) is / are

Evaluate the value of ("lim")_(n vec pi/2 )tan^2xsqrt((2sin^2x+3sinx+4)-sqrt(sin^2x+6sinx+2))

Find the domain of f(x)=sqrt(sinx)+sqrt(16-x^2)