Home
Class 12
MATHS
Find the domain of the function f(x)=(1)...

Find the domain of the function `f(x)=(1)/(8{x}^(2)-6{x}+1).`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \frac{1}{8\{x\}^2 - 6\{x\} + 1} \), we need to determine the values of \( x \) for which the function is defined. The function will be undefined when the denominator is equal to zero. ### Step-by-Step Solution: 1. **Identify the Denominator**: The denominator of the function is \( 8\{x\}^2 - 6\{x\} + 1 \). We need to find when this expression equals zero. 2. **Set the Denominator to Zero**: \[ 8\{x\}^2 - 6\{x\} + 1 = 0 \] 3. **Use the Quadratic Formula**: The quadratic formula is given by: \[ \{x\} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 8 \), \( b = -6 \), and \( c = 1 \). Substituting these values into the formula: \[ \{x\} = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 8 \cdot 1}}{2 \cdot 8} \] \[ = \frac{6 \pm \sqrt{36 - 32}}{16} \] \[ = \frac{6 \pm \sqrt{4}}{16} \] \[ = \frac{6 \pm 2}{16} \] 4. **Calculate the Two Possible Values**: - For the positive root: \[ \{x\} = \frac{8}{16} = \frac{1}{2} \] - For the negative root: \[ \{x\} = \frac{4}{16} = \frac{1}{4} \] 5. **Determine the Corresponding Values of \( x \)**: The fractional part \( \{x\} \) can be expressed as: \[ \{x\} = x - \lfloor x \rfloor \] Therefore, if \( \{x\} = \frac{1}{2} \), then: \[ x = n + \frac{1}{2} \quad \text{for } n \in \mathbb{Z} \] If \( \{x\} = \frac{1}{4} \), then: \[ x = n + \frac{1}{4} \quad \text{for } n \in \mathbb{Z} \] 6. **Identify the Points to Exclude from the Domain**: The function is undefined at: \[ x = n + \frac{1}{2} \quad \text{and} \quad x = n + \frac{1}{4} \quad \text{for } n \in \mathbb{Z} \] 7. **State the Domain**: The domain of the function \( f(x) \) is all real numbers except for the points where the denominator is zero: \[ \text{Domain of } f = \mathbb{R} \setminus \left\{ n + \frac{1}{2}, n + \frac{1}{4} \mid n \in \mathbb{Z} \right\} \]

To find the domain of the function \( f(x) = \frac{1}{8\{x\}^2 - 6\{x\} + 1} \), we need to determine the values of \( x \) for which the function is defined. The function will be undefined when the denominator is equal to zero. ### Step-by-Step Solution: 1. **Identify the Denominator**: The denominator of the function is \( 8\{x\}^2 - 6\{x\} + 1 \). We need to find when this expression equals zero. 2. **Set the Denominator to Zero**: ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.10|6 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.11|7 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.8|9 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find the domain of the function f(x)=1/(1+2sinx)

Find the domain of the function f(x)=1/(1+2sinx)

Find the domain of the function f(x)=sin^(-1)(2x-3)

Find the domain of the function f(x) = (x^(2)+5x+1)/(x^(2)-6x + 8) .

Find the domain of the function f(x) =(x^2+2x+1)/(x^2-8x+12)

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

Find the domain of the function f(x) = (x-1)/(x^(2) + 5x +6) .

Find the domain of the function: f(x)=(sin^(-1)x)/x

Find the domain of the functions f(x) = (1)/(sqrt( 4x^(2)-1)) +log _e (x(x^(2) -1))

Find the domain of the function f(x) = (x^(2))/(4-x^(2))