Home
Class 12
MATHS
Find the equivalent definition of f(x)=m...

Find the equivalent definition of `f(x)=m a xdot{x^2,(-x)^2,2x(1-x)}where 0lt=xlt=1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the equivalent definition of the function \( f(x) = \max\{x^2, (1-x)^2, 2x(1-x)\} \) for \( 0 < x < 1 \), we will analyze each of the three functions involved and determine their behavior within the interval. ### Step 1: Define the Functions We have three functions to consider: 1. \( f_1(x) = x^2 \) 2. \( f_2(x) = (1-x)^2 \) 3. \( f_3(x) = 2x(1-x) \) ### Step 2: Find the Points of Intersection To find the maximum value among these functions, we need to find the points where they intersect. **Intersection of \( f_1(x) \) and \( f_2(x) \):** Set \( x^2 = (1-x)^2 \): \[ x^2 = 1 - 2x + x^2 \implies 2x = 1 \implies x = \frac{1}{2} \] **Intersection of \( f_1(x) \) and \( f_3(x) \):** Set \( x^2 = 2x(1-x) \): \[ x^2 = 2x - 2x^2 \implies 3x^2 - 2x = 0 \implies x(3x - 2) = 0 \] This gives \( x = 0 \) or \( x = \frac{2}{3} \). **Intersection of \( f_2(x) \) and \( f_3(x) \):** Set \( (1-x)^2 = 2x(1-x) \): \[ 1 - 2x + x^2 = 2x - 2x^2 \implies 3x^2 - 4x + 1 = 0 \] Using the quadratic formula: \[ x = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{4 \pm \sqrt{16 - 12}}{6} = \frac{4 \pm 2}{6} \] This gives \( x = 1 \) and \( x = \frac{1}{3} \). ### Step 3: Evaluate the Functions at Critical Points Now we will evaluate \( f_1, f_2, \) and \( f_3 \) at the critical points \( x = 0, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1 \). 1. At \( x = \frac{1}{3} \): - \( f_1\left(\frac{1}{3}\right) = \left(\frac{1}{3}\right)^2 = \frac{1}{9} \) - \( f_2\left(\frac{1}{3}\right) = \left(1 - \frac{1}{3}\right)^2 = \left(\frac{2}{3}\right)^2 = \frac{4}{9} \) - \( f_3\left(\frac{1}{3}\right) = 2 \cdot \frac{1}{3} \cdot \left(1 - \frac{1}{3}\right) = 2 \cdot \frac{1}{3} \cdot \frac{2}{3} = \frac{4}{9} \) 2. At \( x = \frac{1}{2} \): - \( f_1\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \) - \( f_2\left(\frac{1}{2}\right) = \left(1 - \frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \) - \( f_3\left(\frac{1}{2}\right) = 2 \cdot \frac{1}{2} \cdot \left(1 - \frac{1}{2}\right) = 2 \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \) 3. At \( x = \frac{2}{3} \): - \( f_1\left(\frac{2}{3}\right) = \left(\frac{2}{3}\right)^2 = \frac{4}{9} \) - \( f_2\left(\frac{2}{3}\right) = \left(1 - \frac{2}{3}\right)^2 = \left(\frac{1}{3}\right)^2 = \frac{1}{9} \) - \( f_3\left(\frac{2}{3}\right) = 2 \cdot \frac{2}{3} \cdot \left(1 - \frac{2}{3}\right) = 2 \cdot \frac{2}{3} \cdot \frac{1}{3} = \frac{4}{9} \) ### Step 4: Determine the Maximum Function From the evaluations: - For \( x \in (0, \frac{1}{3}) \): \( f(x) = f_2(x) = (1-x)^2 \) - For \( x \in [\frac{1}{3}, \frac{2}{3}] \): \( f(x) = f_3(x) = 2x(1-x) \) - For \( x \in (\frac{2}{3}, 1) \): \( f(x) = f_1(x) = x^2 \) ### Final Equivalent Definition Thus, the equivalent definition of the function \( f(x) \) can be expressed as: \[ f(x) = \begin{cases} (1-x)^2 & \text{for } 0 < x < \frac{1}{3} \\ 2x(1-x) & \text{for } \frac{1}{3} \leq x \leq \frac{2}{3} \\ x^2 & \text{for } \frac{2}{3} < x < 1 \end{cases} \]

To find the equivalent definition of the function \( f(x) = \max\{x^2, (1-x)^2, 2x(1-x)\} \) for \( 0 < x < 1 \), we will analyze each of the three functions involved and determine their behavior within the interval. ### Step 1: Define the Functions We have three functions to consider: 1. \( f_1(x) = x^2 \) 2. \( f_2(x) = (1-x)^2 \) 3. \( f_3(x) = 2x(1-x) \) ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.10|6 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.11|7 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.8|9 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find the equivalent definition of f(x)=max{x^2,(1-x)^2,2x(1-x)} where 0lt=xlt=1

The equivalent definition of f(x)=||x|-1| , is

Draw the graph of the function f(x)=m a xdot{sinx ,cos2x},x in [0,2pi]dot Write the equivalent definition of f(x) and find the range of the function.

Draw the graph of the function f(x)=m a x{sinx ,cos2x},x in [0,2pi] . Write the equivalent definition of f(x) and find the range of the function.

f(x)={(4, xlt-1) ,(-4x,-1lt=xlt=0):} If f(x) is an even function in R then the definition of f(x) in (0,oo) is: (A) f(x)={(4x, 0ltxle1),(4, xgt1):} (B) f(x)={(4x, 0ltxle1),(-4, xgt1):} (C) f(x)={(4, 0ltxle1),(4x, xgt1):} (D) f(x)={(4, xlt-1),(-4x, -1lexle0):}

Let f(x) =M a xi mu m {x^2,(1-x)^2,2x(1-x)}, where 0lt=xlt=1. Determine the area of the region bounded by the curves y=f(x) ,x-axis ,x=0, and x=1.

Find the value of "cos"(2cos^(-1)x+sin^(-1)x) at x=1/5, where 0lt=pi and -pi/2lt=sin^(-1)xlt=pi/2dot

The domain of definition of f(x)=log_(1.7)((2-phi'(x))/(x+1))^(1//2) , where phi(x)=(x^(3))/(3)-(3)/(2)x^(2)-2x+(3)/(2) , is

Discuss the continuity of f(x)={(x{x}+1 ,, 0lt=x<1),(2-{x} ,, 1lt=x<2):} where {x} denotes the fractional part function.

Find the values of a and b , if the function f(x) defined by f(x)={x^2+3x+a ,\ \ xlt=1b x+2,\ \ \ \ \ \ \ \ \ \ x >1 is differentiable at x=1 .