Home
Class 12
MATHS
The maximum value of y = sqrt((x-3)^(2...

The maximum value of
`y = sqrt((x-3)^(2)+(x^(2)-2)^(2))-sqrt(x^(2)-(x^(2)-1)^(2))` is

A

3

B

`sqrt(10)`

C

`2sqrt(5)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the function \[ y = \sqrt{(x-3)^2 + (x^2 - 2)^2} - \sqrt{x^2 - (x^2 - 1)^2} \] we will analyze the two components of the equation step by step. ### Step 1: Simplify the second term The second term is \[ \sqrt{x^2 - (x^2 - 1)^2}. \] Let's simplify it: \[ (x^2 - 1)^2 = x^4 - 2x^2 + 1. \] Thus, \[ x^2 - (x^2 - 1)^2 = x^2 - (x^4 - 2x^2 + 1) = x^2 - x^4 + 2x^2 - 1 = -x^4 + 3x^2 - 1. \] So, we rewrite the second term: \[ \sqrt{-x^4 + 3x^2 - 1}. \] ### Step 2: Rewrite the entire expression Now, we can rewrite the function \(y\): \[ y = \sqrt{(x-3)^2 + (x^2 - 2)^2} - \sqrt{-x^4 + 3x^2 - 1}. \] ### Step 3: Analyze the first term The first term, \(\sqrt{(x-3)^2 + (x^2 - 2)^2}\), represents the distance between the points \(A(x, x^2)\) and \(B(3, 2)\). ### Step 4: Identify points Let’s identify the points: - Point A: \(A(x, x^2)\) - Point B: \(B(3, 2)\) - Point C: \(C(0, 1)\) ### Step 5: Use distance formula The distance \(AB\) is given by: \[ AB = \sqrt{(x - 3)^2 + (x^2 - 2)^2}. \] The distance \(AC\) is given by: \[ AC = \sqrt{(x - 0)^2 + (x^2 - 1)^2}. \] ### Step 6: Find maximum value To find the maximum value of \(y\), we can analyze the expression \(AB - AC\). The maximum value occurs when the distance \(BC\) is maximized. ### Step 7: Calculate distance BC The distance \(BC\) is given by: \[ BC = \sqrt{(3 - 0)^2 + (2 - 1)^2} = \sqrt{9 + 1} = \sqrt{10}. \] ### Conclusion Thus, the maximum value of \(y\) is: \[ \sqrt{10}. \] ### Answer The maximum value of \(y\) is \(\sqrt{10}\). ---

To find the maximum value of the function \[ y = \sqrt{(x-3)^2 + (x^2 - 2)^2} - \sqrt{x^2 - (x^2 - 1)^2} \] we will analyze the two components of the equation step by step. ...
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise JEE Main|6 Videos

Similar Questions

Explore conceptually related problems

Identify the curve sqrt((x+1)^(2)+y^(2))+ sqrt(x^(2)+(y-1)^(2))-2 =0

lim_(x to oo ) (sqrt(3x^(2)-1)-sqrt(2x^(2)-3))/(4x+3)

If sqrt((2x^(2)+x+2)/(x^(2)+3x+1))+2"."sqrt((x^(2)+3x+1)/(2x^(2)+x+2))-3=0 , find x.

The eccentricity of the hyperbola |sqrt((x-3)^2+(y-2)^2)-sqrt((x+1)^2+(y+1)^2)|=1 is ______

The eccentricity of the hyperbola |sqrt((x-3)^2+(y-2)^2)-sqrt((x+1)^2+(y+1)^2)|=1 is ______

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

Simplify : (sqrt(x^(2)+y^(2))-y)/(x-sqrt(x^(2)-y^(2))) div (sqrt(x^(2)-y^(2))+x)/(sqrt(x^(2)+y^(2))+y)

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

The value of lim_(xto2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2)) is

If the locus of the moving point P(x,y) satisfying sqrt((x-1)^(2)+y^(2))+sqrt((x+1)^(2)+(y-sqrt(12))^(2))=a is an ellipse, then find the values of a.