The maximum value of `y = sqrt((x-3)^(2)+(x^(2)-2)^(2))-sqrt(x^(2)-(x^(2)-1)^(2))` is
A
3
B
`sqrt(10)`
C
`2sqrt(5)`
D
none of these
Text Solution
AI Generated Solution
The correct Answer is:
To find the maximum value of the function
\[
y = \sqrt{(x-3)^2 + (x^2 - 2)^2} - \sqrt{x^2 - (x^2 - 1)^2}
\]
we will analyze the two components of the equation step by step.
### Step 1: Simplify the second term
The second term is
\[
\sqrt{x^2 - (x^2 - 1)^2}.
\]
Let's simplify it:
\[
(x^2 - 1)^2 = x^4 - 2x^2 + 1.
\]
Thus,
\[
x^2 - (x^2 - 1)^2 = x^2 - (x^4 - 2x^2 + 1) = x^2 - x^4 + 2x^2 - 1 = -x^4 + 3x^2 - 1.
\]
So, we rewrite the second term:
\[
\sqrt{-x^4 + 3x^2 - 1}.
\]
### Step 2: Rewrite the entire expression
Now, we can rewrite the function \(y\):
\[
y = \sqrt{(x-3)^2 + (x^2 - 2)^2} - \sqrt{-x^4 + 3x^2 - 1}.
\]
### Step 3: Analyze the first term
The first term, \(\sqrt{(x-3)^2 + (x^2 - 2)^2}\), represents the distance between the points \(A(x, x^2)\) and \(B(3, 2)\).
### Step 4: Identify points
Let’s identify the points:
- Point A: \(A(x, x^2)\)
- Point B: \(B(3, 2)\)
- Point C: \(C(0, 1)\)
### Step 5: Use distance formula
The distance \(AB\) is given by:
\[
AB = \sqrt{(x - 3)^2 + (x^2 - 2)^2}.
\]
The distance \(AC\) is given by:
\[
AC = \sqrt{(x - 0)^2 + (x^2 - 1)^2}.
\]
### Step 6: Find maximum value
To find the maximum value of \(y\), we can analyze the expression \(AB - AC\). The maximum value occurs when the distance \(BC\) is maximized.
### Step 7: Calculate distance BC
The distance \(BC\) is given by:
\[
BC = \sqrt{(3 - 0)^2 + (2 - 1)^2} = \sqrt{9 + 1} = \sqrt{10}.
\]
### Conclusion
Thus, the maximum value of \(y\) is:
\[
\sqrt{10}.
\]
### Answer
The maximum value of \(y\) is \(\sqrt{10}\).
---
To find the maximum value of the function
\[
y = \sqrt{(x-3)^2 + (x^2 - 2)^2} - \sqrt{x^2 - (x^2 - 1)^2}
\]
we will analyze the two components of the equation step by step.
...