If G is the centroid of triangle with vertices `A(a,0),B(-a,0)` and `C(b,c)` then `(AB^(2)+BC^(2)+CA^(2))/(GA^(2)+GB^(2)+GC^(2))=`
A
1
B
2
C
3
D
4
Text Solution
Verified by Experts
The correct Answer is:
C
Vertices are `A(a,0),B(-a,0)` and `C(b,c)` `:.` Centroid is `G((b)/(3),(c)/(3))` `(AB^(2)+BC^(2)+CA^(2))/(GA^(2)+GB^(2)+GC^(2))` `=(4a^(2)+(a+b)^(2)+c^(2)+(a-b)^(2)+c^(2))/(((b)/(3)-a)^(2)+((c)/(3))^(2)+((b)/(3)+a)^(2)+((c)/(3))^(2)+((2b)/(3))^(2)+((2c)/(3))^(2))` `=(4a^(2)+2c^(2)+2a^(2)+2b^(2))/((2b^(2))/(9)+2a^(2)+(6c^(2))/(9)+(4b^(2))/(9))=3`
Find the centroid of the triangle whose vertices are A(-1,0), B(5, -2) and C(8, 2).
Find the orthocentre of Delta A B C with vertices A(1,0),B(-2,1), and C(5,2)
Find the orthocentre of Delta A B C with vertices A(1,0),B(-2,1), and C(5,2)
The vertices of a triangle ABC are A(0, 0), B(2, -1) and C(9, 2) , find cos B .
If G be the centroid of a triangle ABC, prove that, AB^2 + BC^2 + CA^2 = 3(GA^2 + GB^2 + GC^2)
If G is the centroid of a DeltaABC , then GA^(2)+GB^(2)+GC^(2) is equal to
lf G be the centroid of a triangle ABC and P be any other point in the plane prove that PA^2+PB^2+PC^2=GA^2+GB^2+GC^2+3GP^2
The medians AD and BE of the triangle with vertices A(0,b),B(0,0) and C(a,0) are mutually perpendicular. Prove that a^2=2b^2 .
Let a, b and c are the roots of the equation x^(3)-7x^(2)+9x-13=0 and A and B are two matrices given by A=[(a,b,c),(b,c,a),(c,a,b)] and B=[(bc-a^(2),ca-b^(2),ab-c^(2)),(ca-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ca-b^(2))] , then the value |A||B| is equal to
Let agt0, bgt0, cgt0 and a+b+c=6 then ((ab+1)^(2))/(b^(2))+((bc+1)^(2))/(c^(2))+((ca+1)^(2))/(a^(2)) may be
CENGAGE ENGLISH-COORDINATE SYSTEM-Multiple Correct Answers Type