Under rotation of axes through `theta` , `x cosalpha + ysinalpha=P` changes to `Xcos beta + Y sin beta=P` then .
(a) `cos beta = cos (alpha - theta)`
(b) `cos alpha= cos( beta - theta)`
(c) `sin beta = sin (alpha - theta)`
(d) `sin alpha = sin ( beta - theta)`
Under rotation of axes through `theta` , `x cosalpha + ysinalpha=P` changes to `Xcos beta + Y sin beta=P` then .
(a) `cos beta = cos (alpha - theta)`
(b) `cos alpha= cos( beta - theta)`
(c) `sin beta = sin (alpha - theta)`
(d) `sin alpha = sin ( beta - theta)`
A
`cos beta = cos (alpha - theta)`
B
`cos alpha = cos (beta - theta)`
C
`sin beta = sin (alpha - theta)`
D
`sin alpha = sin (beta - theta)`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to analyze the transformation of the equation under the rotation of axes. The given equation is:
\[ x \cos \alpha + y \sin \alpha = P \]
After rotation through an angle \( \theta \), the coordinates change to \( X \) and \( Y \), leading to the new equation:
\[ X \cos \beta + Y \sin \beta = P \]
We need to find the relationships between \( \alpha \), \( \beta \), and \( \theta \).
### Step-by-Step Solution:
1. **Substitute the transformations for \( x \) and \( y \)**:
The transformations for the coordinates under rotation are:
\[
x = X \cos \theta - Y \sin \theta
\]
\[
y = X \sin \theta + Y \cos \theta
\]
2. **Substitute these into the original equation**:
Replace \( x \) and \( y \) in the equation \( x \cos \alpha + y \sin \alpha = P \):
\[
(X \cos \theta - Y \sin \theta) \cos \alpha + (X \sin \theta + Y \cos \theta) \sin \alpha = P
\]
3. **Expand the equation**:
Expanding the left-hand side gives:
\[
X \cos \theta \cos \alpha - Y \sin \theta \cos \alpha + X \sin \theta \sin \alpha + Y \cos \theta \sin \alpha = P
\]
4. **Rearranging terms**:
Group the terms involving \( X \) and \( Y \):
\[
X (\cos \theta \cos \alpha + \sin \theta \sin \alpha) + Y (\cos \theta \sin \alpha - \sin \theta \cos \alpha) = P
\]
5. **Use trigonometric identities**:
Recognize the trigonometric identities:
\[
\cos(\alpha - \theta) = \cos \theta \cos \alpha + \sin \theta \sin \alpha
\]
\[
\sin(\alpha - \theta) = \sin \theta \cos \alpha - \cos \theta \sin \alpha
\]
Thus, we can rewrite the equation as:
\[
X \cos(\alpha - \theta) + Y \sin(\alpha - \theta) = P
\]
6. **Compare with the new equation**:
Now, we compare this with the new equation \( X \cos \beta + Y \sin \beta = P \). From this comparison, we can conclude:
\[
\cos \beta = \cos(\alpha - \theta)
\]
\[
\sin \beta = \sin(\alpha - \theta)
\]
### Conclusion:
From the derived relationships, we can conclude:
- \( \cos \beta = \cos(\alpha - \theta) \)
- \( \sin \beta = \sin(\alpha - \theta) \)
Thus, the correct options are:
(a) \( \cos \beta = \cos(\alpha - \theta) \) and (c) \( \sin \beta = \sin(\alpha - \theta) \).
To solve the problem, we need to analyze the transformation of the equation under the rotation of axes. The given equation is:
\[ x \cos \alpha + y \sin \alpha = P \]
After rotation through an angle \( \theta \), the coordinates change to \( X \) and \( Y \), leading to the new equation:
\[ X \cos \beta + Y \sin \beta = P \]
...
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.
The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin alpha hatk is a
If cos theta=(cos alpha-cos beta)/(1-cos alpha cos beta), prove that tan theta/2=+-tan alpha/2 cot beta/2.
Show that cos ^2 alpha + cos^2 (alpha +Beta) - 2 cos alpha cos betacos (alpha+ beta) =sin^2 beta
If ( cos x - cos alpha)/(cos x - cos beta) = ( sin^2 alpha cos beta)/(sin^2 beta cos alpha) then cos x =
Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))
Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha
The lines x cos alpha + y sin alpha = P_1 and x cos beta + y sin beta = P_2 will be perpendicular, if :
The lines x cos alpha + y sin alpha = P_1 and x cos beta + y sin beta = P_2 will be perpendicular, if :
alpha & beta are solutions of a cos theta+b sin theta=c(cosalpha != cos beta)&(sin alpha != sin beta) Then tan((alpha+beta)/2)=?