Home
Class 12
MATHS
Under rotation of axes through theta , x...

Under rotation of axes through `theta` , `x cosalpha + ysinalpha=P` changes to `Xcos beta + Y sin beta=P` then . (a) `cos beta = cos (alpha - theta)` (b) `cos alpha= cos( beta - theta)` (c) `sin beta = sin (alpha - theta)` (d) `sin alpha = sin ( beta - theta)`

A

`cos beta = cos (alpha - theta)`

B

`cos alpha = cos (beta - theta)`

C

`sin beta = sin (alpha - theta)`

D

`sin alpha = sin (beta - theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the transformation of the equation under the rotation of axes. The given equation is: \[ x \cos \alpha + y \sin \alpha = P \] After rotation through an angle \( \theta \), the coordinates change to \( X \) and \( Y \), leading to the new equation: \[ X \cos \beta + Y \sin \beta = P \] We need to find the relationships between \( \alpha \), \( \beta \), and \( \theta \). ### Step-by-Step Solution: 1. **Substitute the transformations for \( x \) and \( y \)**: The transformations for the coordinates under rotation are: \[ x = X \cos \theta - Y \sin \theta \] \[ y = X \sin \theta + Y \cos \theta \] 2. **Substitute these into the original equation**: Replace \( x \) and \( y \) in the equation \( x \cos \alpha + y \sin \alpha = P \): \[ (X \cos \theta - Y \sin \theta) \cos \alpha + (X \sin \theta + Y \cos \theta) \sin \alpha = P \] 3. **Expand the equation**: Expanding the left-hand side gives: \[ X \cos \theta \cos \alpha - Y \sin \theta \cos \alpha + X \sin \theta \sin \alpha + Y \cos \theta \sin \alpha = P \] 4. **Rearranging terms**: Group the terms involving \( X \) and \( Y \): \[ X (\cos \theta \cos \alpha + \sin \theta \sin \alpha) + Y (\cos \theta \sin \alpha - \sin \theta \cos \alpha) = P \] 5. **Use trigonometric identities**: Recognize the trigonometric identities: \[ \cos(\alpha - \theta) = \cos \theta \cos \alpha + \sin \theta \sin \alpha \] \[ \sin(\alpha - \theta) = \sin \theta \cos \alpha - \cos \theta \sin \alpha \] Thus, we can rewrite the equation as: \[ X \cos(\alpha - \theta) + Y \sin(\alpha - \theta) = P \] 6. **Compare with the new equation**: Now, we compare this with the new equation \( X \cos \beta + Y \sin \beta = P \). From this comparison, we can conclude: \[ \cos \beta = \cos(\alpha - \theta) \] \[ \sin \beta = \sin(\alpha - \theta) \] ### Conclusion: From the derived relationships, we can conclude: - \( \cos \beta = \cos(\alpha - \theta) \) - \( \sin \beta = \sin(\alpha - \theta) \) Thus, the correct options are: (a) \( \cos \beta = \cos(\alpha - \theta) \) and (c) \( \sin \beta = \sin(\alpha - \theta) \).

To solve the problem, we need to analyze the transformation of the equation under the rotation of axes. The given equation is: \[ x \cos \alpha + y \sin \alpha = P \] After rotation through an angle \( \theta \), the coordinates change to \( X \) and \( Y \), leading to the new equation: \[ X \cos \beta + Y \sin \beta = P \] ...
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise JEE Main|6 Videos

Similar Questions

Explore conceptually related problems

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.

The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin alpha hatk is a

If cos theta=(cos alpha-cos beta)/(1-cos alpha cos beta), prove that tan theta/2=+-tan alpha/2 cot beta/2.

Show that cos ^2 alpha + cos^2 (alpha +Beta) - 2 cos alpha cos betacos (alpha+ beta) =sin^2 beta

If ( cos x - cos alpha)/(cos x - cos beta) = ( sin^2 alpha cos beta)/(sin^2 beta cos alpha) then cos x =

Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

The lines x cos alpha + y sin alpha = P_1 and x cos beta + y sin beta = P_2 will be perpendicular, if :

The lines x cos alpha + y sin alpha = P_1 and x cos beta + y sin beta = P_2 will be perpendicular, if :

alpha & beta are solutions of a cos theta+b sin theta=c(cosalpha != cos beta)&(sin alpha != sin beta) Then tan((alpha+beta)/2)=?