Home
Class 12
MATHS
Prove that the line y=m(x-1)+3sqrt(1+m^(...

Prove that the line `y=m(x-1)+3sqrt(1+m^(2))-2` touches the circle `x^(2)+y^(2)-2x+4y-4=0` for all real values of m.

Text Solution

AI Generated Solution

To prove that the line \( y = m(x - 1) + 3\sqrt{1 + m^2} - 2 \) touches the circle \( x^2 + y^2 - 2x + 4y - 4 = 0 \) for all real values of \( m \), we will follow these steps: ### Step 1: Rewrite the Circle's Equation First, we need to rewrite the equation of the circle in standard form. The given equation is: \[ x^2 + y^2 - 2x + 4y - 4 = 0 \] We can rearrange this as: ...
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    CENGAGE ENGLISH|Exercise Examples|13 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 4.1|1 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Matrix|4 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos

Similar Questions

Explore conceptually related problems

Show that the line 5x + 12y - 4 = 0 touches the circle x^(2)+ y^(2) -6x + 4y + 12 = 0

Prove that the straight line y = x + a sqrt(2) touches the circle x^(2) + y^(2) - a^(2)=0 Find the point of contact.

If the line y = mx - (m-1) cuts the circle x^2+y^2=4 at two real and distinct points then total values of m are

A line L is perpendicular to the line 3x-4y-7=0 and touches the circle x^(2)+y^(2)-2x-4y-4=0 , the y -intercept of the line L can be:

A line L is perpendicular to the line 3x-4y-7=0 and touches the circle x^(2)+y^(2)-2x-4y-4=0 , the y -intercept of the line L can be:

The line 4y - 3x + lambda =0 touches the circle x^2 + y^2 - 4x - 8y - 5 = 0 then lambda=

For the circle x^(2)+y^(2)-2x-4y-4=0 , then lines 2x+3y-1=0, 2x+y+5=0 are

For what value of k will the line 4x + 3y + k = 0 touch the circle 2x^(2) + 2y^(2) = 5x

The line y=m x-((a^2-b^2)m)/(sqrt(a^2+b^2m^2)) is normal to the ellise (x^2)/(a^2)+(y^2)/(b^2)=1 for all values of m belonging to (0,1) (b) (0,oo) (c) R (d) none of these

The locus of th point (l,m). If the line lx+my=1 touches the circle x^(2)+y^(2)=a^(2) is