Home
Class 12
MATHS
The equation of three circles are given ...

The equation of three circles are given `x^2+y^2=1,x^2+y^2-8x+15=0,x^2+y^2+10 y+24=0` . Determine the coordinates of the point `P` such that the tangents drawn from it to the circle are equal in length.

Text Solution

Verified by Experts

We known that the point from which the lengths of tangents are equal in length is the radical of the given three circles. Now, the radical axis of the first two circles is
`(x^(2)+y^(2)-1)-(x^(2)+y^(2)-8x+15)=0`
`i.e., x-2=0` (1)
and the radical axis of the second and third circle is
`(x^(2)+y^(2)-8x+15)-(x^(2)+y^(2)+10y+24)=0`
i.e., `8x+10y+9=0` (2)
Solving (1) and (2), the coordinates of the radical center, i.e., of the point P, are `P(2,-5//2)`.
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    CENGAGE ENGLISH|Exercise Examples|13 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 4.1|1 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Matrix|4 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos

Similar Questions

Explore conceptually related problems

The length of the chord of contact of the tangents drawn from the point (-2,3) to the circle x^2+y^2-4x-6y+12=0 is:

The equation of the circle which cuts the three circles x^2+y^2-4x-6y+4=0, x^2+y^2-2x-8y+4=0, x^2+y^2-6x-6y+4=0 orthogonally is

The straight line x-2y+5=0 intersects the circle x^(2)+y^(2)=25 in points P and Q, the coordinates of the point of the intersection of tangents drawn at P and Q to the circle is

Find the equation of tangents of the circle x^(2) + y^(2) - 8 x - 2y + 12 = 0 at the points whose ordinates are -1.

If the straight line x - 2y + 1 = 0 intersects the circle x^2 + y^2 = 25 at points P and Q, then find the coordinates of the point of intersection of the tangents drawn at P and Q to the circle x^2 + y^2 = 25 .

If the straight line x - 2y + 1 = 0 intersects the circle x^2 + y^2 = 25 at points P and Q, then find the coordinates of the point of intersection of the tangents drawn at P and Q to the circle x^2 + y^2 = 25 .

The point of tangency of the circles x^2+ y^2 - 2x-4y = 0 and x^2 + y^2-8y -4 = 0 , is

The point of tangency of the circles x^2+ y^2 - 2x-4y = 0 and x^2 + y^2-8y -4 = 0 , is

The straight line x-2y+1=0 intersects the circle x^(2)+y^(2)=25 in points P and Q the coordinates of the point of intersection of tangents drawn at P and Q to the circle is

The equation of the tangent to the circle x^(2)+y^(2)-4x+4y-2=0 at (1,1) is