Home
Class 12
MATHS
Let A,B,C be the three angles such that ...

Let A,B,C be the three angles such that `A+B+C=pi , tan A.tan B=2`, then find the value of `(cos A cos B)/(cos C)`

Text Solution

AI Generated Solution

To solve the problem step by step, we will start with the given information and use trigonometric identities to find the required value. ### Step 1: Understand the given information We are given that \( A + B + C = \pi \) and \( \tan A \tan B = 2 \). We need to find the value of \( \frac{\cos A \cos B}{\cos C} \). **Hint:** Recall that if \( A + B + C = \pi \), then \( C = \pi - (A + B) \). ### Step 2: Express \( C \) in terms of \( A \) and \( B \) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Solved example|15 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.1|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Let A , B , C be the three angles such that A+B+C=pi . If tanA.tanB=2, then find the value of (cosAcosB)/(cosC)

Let A , B , C be the three angles such that A+B+C=pi . If T a nAtanB=2, then find the value of (cos(A-B))/(cosC)

In DeltaABC, a=4, b=6, c=8 , then find the value of 8 cos A + 16 cos B + 4 cos C .

In Delta ABC , angle B = 90^(@) find the values of : sin A cos C + cos A sin C

If tan A =a/b , then find the value of ("a sin A- b cos A")/("a sin A + b cos A") .

In a Delta A B C , If a=18 ,\ b=24 ,\ c=30 , find the value of cos A ,\ cos B\ a n d\ cos Cdot

In Delta ABC , angle B = 90^(@) find the values of : cos A cos C -sin A sin C

In an acute angled DeltaABC , if tan (A+B-C) = 1 and sec (B+C-A)=2 , then find the value of cos (4B-3A) .

If A,B,C are the angles of triangle ABC, then the minimum value of |{:(-1,cos C , cos B),(cos C , -1, cos A ) , (cos B , cos A , -1):}| is equal to :

If DeltaABC is right angled at C , then the value of cos(A+B) is