Home
Class 12
MATHS
If in triangle A B C ,/C=45^0 then find ...

If in triangle `A B C ,/_C=45^0` then find the range of the values of `sin^2A+sin^2Bdot`

Text Solution

Verified by Experts

`E=sin^(2)A+sin^(2)B`
`=sin^(2)A+sin^(2)(135^(@)-A)`
`=sin^(2)A+cos^(2)(45^(@)-A)`
`=1+sin^(2)A-sin^(2)(45^(@)-A)`
`=1+sin(2A-45^(@))sin 45^(@)`
`=1+(1)/sqrt(2)sin(2A-45^(@))`
Now `0ltA lt135^(@)`
`rArr 0lt2Alt270^(@)`
`rArr -45^(@)lt2A-45^(@)lt225^(@)`
`rArr -(1)/sqrt(2)ltsin(2A-45^(@))le1`
`rArr -(1)/(2)lt(1)/sqrt(2)sin(2A-45^(@))le(1)/sqrt(2)`
`rArr(1)/(2)lt1+(1)/sqrt(2)sin(2A-45^(@))le1+(1)/sqrt(2)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Solved example|15 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.1|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If in any Delta A B C ,\ /_C=105^0,/_B=45^0, a=2, then find bdot

In a right angled triangle ABC, write the value of sin^2 A + sin^2 B+ sin^2C

Let a , b and c detnote the sides BC,CA and AB respectively of triangle ABC . If |[1,a, b],[1,c, a],[1,b ,c]|=0 . find the value of sin^2A+sin^2B+sin^2C

Let a ,\ b and c denote the sides B C ,\ C A and A B respectively of A B C . If |1a b1c a1b c|=0, then find the value of sin^2A+sin^2B+sin^2C .

If sides a , b , c of the triangle A B C are in AdotPdot , then prove that sin^2A/2cos e c\ 2A ;sin^2B/2cos e c\ 2B\ ;sin^2C/2cos e c\ 2C are in H.P.

If sinA=sin B and cosA=cosB , then find the value of A in terms of Bdot

If any triangle ABC, find the value of asin(B-C)+b sin(C-A)+c sin(A-B)dot

In Delta ABC , angle B = 90^(@) find the values of : cos A cos C -sin A sin C

If the incircle of the triangle ABC passes through its circumcenter, then find the value of 4 sin.(A)/(2) sin.(B)/(2) sin.(C)/(2)

In Delta ABC , angle B = 90^(@) find the values of : sin A cos C + cos A sin C