Home
Class 12
MATHS
Prove that: sum(k=1)^(100)sin(k x)cos(10...

Prove that: `sum_(k=1)^(100)sin(k x)cos(101-k)x=50"sin"(101 x)`

Text Solution

Verified by Experts

Let `S=sum_(k=1)^(100)sin(kx)cos(101-k)x`
`rArr S=sinx cox 100x+sin2x cos 99x+..........+sin100x cos x`. (i)
`S=cos x sin 100x+cos 2x sin 99x+.......+sin x cos 100x`.....(ii)
(on writing in reverse order)
Adding Eqs. (i) and (ii) we get
`2S=(sin x cos 100x+cos x sin 100x)`
`+(sin2x cos 99x+cos 2xsin99x)`
`+(sin 100x cos x+sin x cos 100x)`
`=sin 101x+sin 101x+......+sin101x(100"times")`
Hence, `S=50sin(101x)`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Solved example|15 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.1|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(k=1)^(n-1) ""^(n)C_(k)[cos k x. cos (n+k)x+sin(n-k)x.sin(2n-k)x]=(2^(n)-2)cos nx .

Let k=1^@ , then prove that sum_(n=0)^88 1/(cosnk* cos(n+1)k)=cosk/sin^2k

Prove that sum_(k=0)^(9) x^(k)"divides" sum_(k=0)^(9) x^(kkkk)

Prove that sin (cos^(-1) x) = cos (sin^(-1) x)

Prove that Sigma_(K=0)^(n) ""^nC_(k) sin K x cos (n-K)x = 2^(n-1) sin x.

The coefficient of x^(50) in the expansion sum_(k=0)^(100)""^(100)C_(k)( x-2)^(100-k)3^(k) is also equal to :

Prove that int_0^(102)(x-1)(x-2)(x-100) x(1/((x-1)+1/((x-2))+1/((x-100))dx=101 !-100 !

Prove that int_0^(102)(x-1)(x-2)..(x-100)xx(1/(x-1)+1/(x-2) +.... .+ 1/(x-100))dx=101 !-100 !

Evaluate lim_(x to 1) (sum_(k=1)^(100) x^(k) - 100)/(x-1).

If sum_(k=0)^(200)i^k+prod_(p=1)^(50)i^p =x+iy then (x,y) is