Home
Class 12
MATHS
Minimum value of 27^(cos 2x)*81^(sin 2x)...

Minimum value of `27^(cos 2x)*81^(sin 2x)` is

Text Solution

Verified by Experts

Let
`y=27^(cos 2x)xx81(sin 2x)`
`=3^(3cos 2x)xx3^(4sin 2x)`
`=3^(3cos2x+4sin2x)`
Now, `-sqrt(3^(2)+4^(2))le3 cos 2x+4 sin 2xlesqrt(3^(2)+4^(2))`
`therefore -5le3cos 2x+4 sin 2xle5`
`rArr 3^(-5)le3^(3cos2x+4sin2x)le3^(5)`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Solved example|15 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.1|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Each question has four choices a,b,c and d out of which only one is correct. Each question contains Statement 1 and Statement 2. Make your answer as: If both the statements are true and Statement 2 is the correct explanation of statement 1. If both the statements are True but Statement 2 is not the correct explanation of Statement 1. If Statement 1 is True and Statement 2 is False. If Statement 1 is False and Statement 2 is True. Statement 1: The minimum value of 27^(cos2x)81^(sin2x) is 1/(243) Statement 2: The minimum value of acostheta+bsinthetai s-sqrt(a^2+b^2)

Find the maximum & minimum values of 27^(cos2x). 81^(sin2x)

The minimum value of 27^(cos3x)81^(sin3x) is

The Minimum value of 27^cosx +81^sinx is equal to

Find the minimum value of 2^("sin" x) + 2^("cos" x)

The minimum value of 2x^2 +x-1 is

Find the minimum value of 4^sin^(2x)+4^cos^(2x) .

The minimum value of (a^(2))/(cos^(2)x)+(b^(2))/(sin^(2)x)

Find maximum and minimum values of 9cos^(2)x + 48 sinx cosx - 5 sin^(2)x - 2 .

Find the minimum value of 4sin^(2)x+4cos^(2)x .