Home
Class 12
MATHS
If tanalpha=m/(m+1) and tanbeta=1/(2m+1)...

If `tanalpha=m/(m+1)` and `tanbeta=1/(2m+1)`. Find the possible values of `tan(alpha+beta)`

A

`2`

B

`1`

C

`-1`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the possible values of \( \tan(\alpha + \beta) \) given \( \tan \alpha = \frac{m}{m + 1} \) and \( \tan \beta = \frac{1}{2m + 1} \), we can use the formula for the tangent of the sum of two angles: \[ \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \] ### Step 1: Substitute the values of \( \tan \alpha \) and \( \tan \beta \) Substituting the given values into the formula: \[ \tan(\alpha + \beta) = \frac{\frac{m}{m + 1} + \frac{1}{2m + 1}}{1 - \left(\frac{m}{m + 1} \cdot \frac{1}{2m + 1}\right)} \] ### Step 2: Find a common denominator for the numerator The common denominator for the numerator \( \frac{m}{m + 1} + \frac{1}{2m + 1} \) is \( (m + 1)(2m + 1) \): \[ \tan(\alpha + \beta) = \frac{\frac{m(2m + 1) + 1(m + 1)}{(m + 1)(2m + 1)}}{1 - \frac{m}{m + 1} \cdot \frac{1}{2m + 1}} \] ### Step 3: Simplify the numerator Expanding the numerator: \[ m(2m + 1) + (m + 1) = 2m^2 + m + m + 1 = 2m^2 + 2m + 1 \] So, the numerator becomes: \[ \frac{2m^2 + 2m + 1}{(m + 1)(2m + 1)} \] ### Step 4: Simplify the denominator Now, simplify the denominator: \[ 1 - \left(\frac{m}{m + 1} \cdot \frac{1}{2m + 1}\right) = 1 - \frac{m}{(m + 1)(2m + 1)} \] Finding a common denominator for the denominator: \[ = \frac{(m + 1)(2m + 1) - m}{(m + 1)(2m + 1)} = \frac{(2m^2 + 3m + 1) - m}{(m + 1)(2m + 1)} = \frac{2m^2 + 2m + 1}{(m + 1)(2m + 1)} \] ### Step 5: Combine the results Now substituting back into the tangent formula: \[ \tan(\alpha + \beta) = \frac{\frac{2m^2 + 2m + 1}{(m + 1)(2m + 1)}}{\frac{2m^2 + 2m + 1}{(m + 1)(2m + 1)}} \] This simplifies to: \[ \tan(\alpha + \beta) = 1 \] ### Conclusion Thus, the possible value of \( \tan(\alpha + \beta) \) is: \[ \boxed{1} \]

To find the possible values of \( \tan(\alpha + \beta) \) given \( \tan \alpha = \frac{m}{m + 1} \) and \( \tan \beta = \frac{1}{2m + 1} \), we can use the formula for the tangent of the sum of two angles: \[ \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \] ### Step 1: Substitute the values of \( \tan \alpha \) and \( \tan \beta \) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Solved example|15 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.1|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If tanalpha=m/(m+1) and tanbeta=1/(2m+1) . Find the possible values of (alpha+beta)

If tan alpha =m/(m+1) and tan beta =1/(2m+1) , then alpha+beta is equal to

Given that tan alpha = (m)/( m +1), tan beta = (1)/(2m +1) then what is the value of alpha + beta?

If tanalpha=1/(1+2^(-x)) and tanbeta=1/(1+2^(x+1)), then write the value of alpha+beta lying in the interval (0,pi//2) .

If tanA=m/(m-1) and tanB=1/(2m-1) , find the value of tan(A-B) .

If tanalpha =(1)/(7) and tanbeta =(1)/(3) , then, cos2alpha is equal to

m^2-m+1=0 find the value of m

If cos(alpha+beta)+sin(alpha-beta)=0 and tan beta ne1 , then find the value of tan alpha .

sin alpha+ sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of tan (alpha+beta) is

If sin(alpha+beta)=1 and sin(alpha-beta)=1/2 , where 0lt=alpha, betalt= pi/2 , then find the values of tan(alpha+2beta) and tan(2alpha+beta) .