Home
Class 12
MATHS
Find the Value of (cos alpha+ cos beta...

Find the Value of `(cos alpha+ cos beta)^2+(sinalpha+sin beta)^2`

A

`4cos^2((alpha-beta)/2)`

B

`4cos^2((alpha+beta)/2)`

C

`4cos^2(alpha-beta)`

D

`cos^2((alpha+beta)/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \((\cos \alpha + \cos \beta)^2 + (\sin \alpha + \sin \beta)^2\), we can follow these steps: ### Step 1: Expand the squares We start by expanding both squares in the expression: \[ (\cos \alpha + \cos \beta)^2 = \cos^2 \alpha + \cos^2 \beta + 2 \cos \alpha \cos \beta \] \[ (\sin \alpha + \sin \beta)^2 = \sin^2 \alpha + \sin^2 \beta + 2 \sin \alpha \sin \beta \] ### Step 2: Combine the expanded expressions Now, we combine the results from Step 1: \[ (\cos \alpha + \cos \beta)^2 + (\sin \alpha + \sin \beta)^2 = (\cos^2 \alpha + \sin^2 \alpha) + (\cos^2 \beta + \sin^2 \beta) + 2 (\cos \alpha \cos \beta + \sin \alpha \sin \beta) \] ### Step 3: Use the Pythagorean identity Using the Pythagorean identity, we know that: \[ \cos^2 \alpha + \sin^2 \alpha = 1 \] \[ \cos^2 \beta + \sin^2 \beta = 1 \] So we can simplify the expression: \[ = 1 + 1 + 2 (\cos \alpha \cos \beta + \sin \alpha \sin \beta) \] ### Step 4: Use the cosine addition formula The term \( \cos \alpha \cos \beta + \sin \alpha \sin \beta \) can be rewritten using the cosine of the difference of angles: \[ \cos \alpha \cos \beta + \sin \alpha \sin \beta = \cos(\alpha - \beta) \] ### Step 5: Substitute back into the expression Now, substituting this back into our expression gives: \[ = 2 + 2 \cos(\alpha - \beta) \] ### Step 6: Factor the expression We can factor out the 2: \[ = 2(1 + \cos(\alpha - \beta)) \] ### Final Result Thus, the value of \((\cos \alpha + \cos \beta)^2 + (\sin \alpha + \sin \beta)^2\) is: \[ 2(1 + \cos(\alpha - \beta)) \]

To find the value of \((\cos \alpha + \cos \beta)^2 + (\sin \alpha + \sin \beta)^2\), we can follow these steps: ### Step 1: Expand the squares We start by expanding both squares in the expression: \[ (\cos \alpha + \cos \beta)^2 = \cos^2 \alpha + \cos^2 \beta + 2 \cos \alpha \cos \beta \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Solved example|15 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.1|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))

If (cos alpha)/(cos A)+(sin alpha)/(sin A)+(sin beta)/(sin A)=1 , where alpha and beta do not differ by an even multiple of pi , prove that (cos alpha cos beta)/(cos^(2)A)+(sin alpha sin beta)/(sin^(2)A)=

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.

alpha & beta are solutions of a cos theta+b sin theta=c(cosalpha != cos beta)&(sin alpha != sin beta) Then tan((alpha+beta)/2)=?

If cos alpha = (3)/(5) , cos beta = (4)/(5) , find the value of cos ""(( alpha - beta)/( 2)), assuming alpha and beta to be acute angles.

Find the value of sin (alpha + beta) , cos (alpha + beta) , and tan (alpha + beta), given sin alpha = (3)/(5) , cos beta = (5)/(13), alpha and beta in Quadrant I.

Find the value of sin (alpha + beta) , cos (alpha + beta) , and tan (alpha + beta), given cos alpha = ( -12)/(13), cot beta = (24)/( 7), alpha in Quadrant II, beta in Quadrant III.

If alpha and beta are acute angles and sin alpha = (3)/(5) , sin beta = (8)/( 17), find the values of sin ( alpha + beta), cos (alpha pm beta), and tan ( alpha pm beta).

If ( cos x - cos alpha)/(cos x - cos beta) = ( sin^2 alpha cos beta)/(sin^2 beta cos alpha) then cos x =

Find the value of sin (alpha - beta), cos (alpha -beta) and tan (alpha - beta), given cos alpha = (-12)/(13) , cot beta = (24)/(7), alpha in Quadrant II, beta in Quadrant I.