Home
Class 12
MATHS
In quadrilateral A B C D , if sin((A+B)/...

In quadrilateral `A B C D ,` if `sin((A+B)/2)cos((A-B)/2)+"sin"((C+D)/2)cos((C-D)/2)=2` then find the value of `sinA/2sinB/2sinC/2sinD/2dot`

Text Solution

AI Generated Solution

To solve the problem, we start with the given equation: \[ \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) + \sin\left(\frac{C+D}{2}\right) \cos\left(\frac{C-D}{2}\right) = 2 \] ### Step 1: Use the sine addition formula We can use the sine addition formula, which states: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Solved example|15 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.1|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

In a quadrilateral if sin(A+B)/2cos(A-B)/2+sin(c+D)/2cos(c-D)/2=2, then cosA/2cosB/2+cosA/2cosc/2+cosA/2 cosD/2+cosB/2 cosC/2+cosB/2 cosD/2+cosC/2 cosD/2=

If cos(A+B+C)=cosAcosBcosC , then find the value of (8sin(B+C)sin(C+A)sin(A+B))/(sin2Asin2Bsin2C)

If cos(A+B+C)=cosAcosBcosC , then find the value of (8sin(B+C)sin(C+A)sin(A+B))/(sin2Asin2Bsin2C)

If any quadrilateral ABCD, prove that "sin"(A+B)+sin(C+D)=0 "cos"(A+B)=cos(C+D)

If any quadrilateral ABCD, prove that "sin"(A+B)+sin(C+D)=0 "cos"(A+B)=cos(C+D)

If A,B,C and D are angles of quadrilateral and sin(A)/(2)sin(B)/(2)sin(C)/(2)sin(D)/(2)=(1)/(4) , prove that A=B=C=D= pi//2

If A,B,C and D are angles of quadrilateral and sin(A)/(2)sin(B)/(2)sin(C)/(2)sin(D)/(2)=(1)/(16) , prove that A=B=C=D=pi/2

If ABC D is a cyclic quadrilateral, then find the value of sinA+sinB-sinC-sinD If A+B+C=(pi)/(2) , then find the value of tanA tanB+tanBtanC+tanC tanA

Statement:1 If cos(A+B)sin( C +D) = cos(A-B) sin(C-D) , then the values of cotAcotBcotC is cotD. And Statement:2: If cos(A+B) sin(C+D)= cos(A-B) sin(C-D) then the value of tanAtanBtanC is tanD.

In a triangle ABC, if a, b, c are in A.P. and (b)/(c) sin 2C + (c)/(b) sin 2B + (b)/(a) sin 2A + (a)/(b) sin 2B = 2 , then find the value of sin B