Home
Class 12
MATHS
If A B C ,sinC+cosC+sin(2B+C)-cos(2B+C)...

If ` A B C ,sinC+cosC+sin(2B+C)-cos(2B+C))=2sqrt(2.)` Prove that ` A B C` is right-angled isosceles.

Text Solution

Verified by Experts

`sinC+cos C+sin(2B+C)-cos(2B+C)=2sqrt(2)`
`rArr sinC+sin(2B+C)+cosC-cos(2B+C)=2sqrt(2)`
`rArr 2sin(B+C)cosB+2 sin(B+C)sinB=2sqrt(2)`
`rArr 2sin A (cos B+sinB)=2sqrt(2) [because sin(B+C)=sinA]`
`rArr 2sqrt(2)sin A cos((pi)/(4)-B)=2sqrt(2)`
`rArr sin A cos (B-(pi)/(4))=1`
`rArr sinA=1 "and" cos(B-(pi)/(4))=1`
`rArr A=(pi)/(2) "and" B=(pi)/(4)`.
Hence, `C=(pi)/(4)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Solved example|15 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.1|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

In a A B C , if cosC=(sinA)/(2sinB) , prove that the triangle is isosceles.

In a A B C ,if|1 1 1 1+cosA 1+cosB 1+cosC cos^2A+A cos^2B+cosB cos^2C+cosC|=0 show that A B C is an isosceles.

If in a Delta A B C ,cos^2A+cos^2B+cos^2C=1, prove that the triangle is right angled.

In triangle ABC if 2sin^(2)C=2+cos2A+cos2B , then prove that triangle is right angled.

If sinA=sin^2Ba n d2cos^2A=3cos^2B then the triangle A B C is right angled (b) obtuse angled (c)isosceles (d) equilateral

A B C is an isosceles triangle with A C=B C . If A B^2=2\ A C^2 , prove that A B C is right triangle.

In a triangle A B C , if cos A=(sinB)/(2sinC) , show that the triangle is isosceles.

In A B C , if r\ : r_1: R=2\ : 12\ :5, where all symbols have their usual meaning, then A B C is an acute angled triangle A B C is an obtuse angled triangle A B C is right angled which is not isosceles A B C is isosceles which is not right angled

In DeltaABC, (b^(2)+c^(2))sin(B-C)=(b^(2)-c^(2))sin(B+C) , then prove that the triangle in either isosceles or right angled.

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.