Home
Class 12
MATHS
Prove that sum(r=1)^n(1/(costheta+"cos"(...

Prove that `sum_(r=1)^n(1/(costheta+"cos"(2r+1)theta))=(sinntheta)/(2sintheta costhetacos (n+1)theta),(w h e r en in N)dot`

Text Solution

Verified by Experts

`S=sum_(r=1)^(n)((1)/(cos theta+cos(2r+1)theta))`
`=sum_(r=1)^(n)((sin theta)/(2cos(r+1)thetacosrthetasin theta))`
`=(1)/(2sin theta)(sum_(r=1)^(n)(sin(r+1)theta-rtheta)/(cos(4+1)theta cos rtheta))`
`=(1)/(2sin theta)(sum_(r=1)^(n)(sin(r+1)theta cos rtheta-sinrthetacos(r+1)theta)/(cos (r+1)thetacos rtheta)`
`=(1)/(2sin theta)(sum_(r=1)^(n)(r+1)theta-tan rtheta)`
`=(1)/(2sin theta)(tan (n+1)theta-tan theta)`
`=(sin n theta)/(2 sin theta. cos theta cos (n+1)theta)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Solved example|15 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.1|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=1)^n(1/(costheta+"cos"(2r+1)theta))=(sinntheta)/(2sintheta* costheta*cos (n+1)theta),(w h e r e n in N)dot

Prove that : (1-costheta)/(sintheta)+(sintheta)/(1-costheta)=2"cosec "theta

Prove: (sintheta)/(1-costheta)=cos e c\ theta+cottheta

Prove that: (1+sintheta-costheta)/(1+sintheta+costheta)=tan(theta/2)

Prove that sintheta+s in3theta+sin5theta++sin(2n-1)theta=(sin^2ntheta)/(sintheta)dot

Prove that : (sintheta)/(1+costheta)+(1+costheta)/(sintheta)=2"cosec"theta

Prove that: (sin2theta)/(costheta cos3theta)+(sin4theta)/(cos3theta.cos5theta)+(sin6theta)/(cos5theta.cos7theta)+… to terms = 1/(2sintheta) [sec(2n+1)theta-sectheta]

Prove that sintheta+sin3theta+sin5theta+.....+sin(2n-1)theta=(sin^2ntheta)/(sintheta)dot

Prove: (costheta)/(cos e c\ theta+1)+(costheta)/(cos e c\ theta-1)=2tantheta

Prove that, 1/(costheta-cos3theta)+1/(costheta-cos5theta)+1/(costheta-cos7theta)+…+to n terms = 1/(2sintheta) [cottheta-cot(n+1)theta]