Home
Class 12
MATHS
Find the Value of \ sqrt(2+sqrt(2+2cos4t...

Find the Value of `\ sqrt(2+sqrt(2+2cos4theta))`

A

`2costheta`

B

`costheta`

C

`2cos(theta/2)`

D

`2cos(theta/4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sqrt{2 + \sqrt{2 + 2 \cos 4\theta}} \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \sqrt{2 + \sqrt{2 + 2 \cos 4\theta}} \] ### Step 2: Factor out the common term Notice that we can factor out 2 from the inner square root: \[ \sqrt{2 + \sqrt{2(1 + \cos 4\theta)}} \] ### Step 3: Use the trigonometric identity We know from trigonometric identities that: \[ 1 + \cos 4\theta = 2 \cos^2 2\theta \] Substituting this into our expression gives: \[ \sqrt{2 + \sqrt{2 \cdot 2 \cos^2 2\theta}} = \sqrt{2 + \sqrt{4 \cos^2 2\theta}} \] ### Step 4: Simplify the inner square root The inner square root simplifies to: \[ \sqrt{4 \cos^2 2\theta} = 2 \cos 2\theta \] Thus, our expression now looks like: \[ \sqrt{2 + 2 \cos 2\theta} \] ### Step 5: Factor out the common term again We can factor out 2 from the expression: \[ \sqrt{2(1 + \cos 2\theta)} = \sqrt{2 \cdot 2 \cos^2 \theta} \quad \text{(using } 1 + \cos 2\theta = 2 \cos^2 \theta\text{)} \] ### Step 6: Simplify the expression This simplifies to: \[ \sqrt{4 \cos^2 \theta} = 2 \cos \theta \] ### Final Answer Thus, the value of \( \sqrt{2 + \sqrt{2 + 2 \cos 4\theta}} \) is: \[ \boxed{2 \cos \theta} \]

To find the value of \( \sqrt{2 + \sqrt{2 + 2 \cos 4\theta}} \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \sqrt{2 + \sqrt{2 + 2 \cos 4\theta}} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Solved example|15 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.1|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If pi/2

Find the value of sqrt(1-cos^(2)A) .

If (pi)/(2) lt theta lt pi , then possible answers of sqrt(2+sqrt(2+2cos4theta)) is/are :

If pi lt theta lt (3pi)/(2) , then find the value of sqrt((1-cos2theta)/(1+cos 2 theta)) .

Prove that sqrt ( 2 + sqrt (2 + sqrt (2 + 2 cos 8 theta))) = 2 cos theta, where theta in [ (-pi)/(8), (pi)/(8)]

If pi/2

If pi

Prove that: \ sqrt(2+sqrt(2+2cos4theta))=2costheta

Find the general value of theta sqrt3 cosec theta = 2

(i) If x = (6ab)/(a + b) , find the value of : (x + 3a)/(x - 3a) + (x + 3b)/(x - 3b) . (ii) a = (4sqrt(6))/(sqrt(2) + sqrt(3)) , find the value of : (a + 2sqrt(2))/(a - 2sqrt(2)) + (a + 2sqrt(3))/(a - 2sqrt(3)) .