Home
Class 12
MATHS
If sinalpha+sinbeta=a and cosalpha+cosbe...

If `sinalpha+sinbeta=a` and `cosalpha+cosbeta=b ,` prove that `tan((alpha-beta)/2)=+-sqrt((4-a^2-b^2)/(a^2+b^2))` .

Text Solution

AI Generated Solution

To prove that \( \tan\left(\frac{\alpha - \beta}{2}\right) = \pm \sqrt{\frac{4 - a^2 - b^2}{a^2 + b^2}} \) given that \( \sin \alpha + \sin \beta = a \) and \( \cos \alpha + \cos \beta = b \), we will follow these steps: ### Step 1: Write down the given equations We start with the equations: \[ \sin \alpha + \sin \beta = a \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Solved example|15 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.1|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If sin alpha + sin beta=a and cos alpha+cosbeta=b then tan((alpha-beta)/2) is equal to

If sinalpha+sinbeta=a and cosalpha+cosbeta=b prove that: cos(alpha-beta)=((a^2+b^2-2)/2)

If sinalpha+sinbeta=a and cosalpha+cosbeta=b prove that: cos(alpha-beta)=((a^2+b^2-2)/2)

If sinalpha+sinbeta=a\ and\ cosalpha-cosbeta=b , then tan((alpha-beta)/2)= a. -a/b b. -b/a c. sqrt(a^2+b^2) d. none of these

If sin alpha + sin beta = a and cos alpha + cos beta = b, prove that : cos (alpha-beta) = 1/2 (a^2 + b^2 -2)

If sin alpha+sin beta=a\ a n d\ cosalpha+cosbeta=b , show that : sin(alpha+beta)=(2"a b")/(a^2+b^2)

If sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta) =

If sin alpha+sin beta=a\ a n d\ cosalpha-cosbeta=b , then tan(alpha-beta)/2= -a/b b. b/a c. sqrt(a^2+b^2) d. none of these

If sin alpha+sin beta=a\ a n d\ cosalpha+cosbeta=b , show that : cos(alpha+beta)=(b^2-a^2)/(b^2+a^2)

sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)