Home
Class 12
MATHS
The value of sin 10^(@) sin 30^(@) sin ...

The value of `sin 10^(@) sin 30^(@) sin 50^(@) sin 70^(@)` is equal to .

A

`1/8`

B

`1/32`

C

`1/16`

D

`1/12`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin 10^\circ \sin 30^\circ \sin 50^\circ \sin 70^\circ \), we can follow these steps: ### Step 1: Write the expression We start with the expression: \[ \sin 10^\circ \sin 30^\circ \sin 50^\circ \sin 70^\circ \] ### Step 2: Substitute the value of \( \sin 30^\circ \) We know that: \[ \sin 30^\circ = \frac{1}{2} \] So, substituting this into the expression, we have: \[ \sin 10^\circ \cdot \frac{1}{2} \cdot \sin 50^\circ \cdot \sin 70^\circ = \frac{1}{2} \sin 10^\circ \sin 50^\circ \sin 70^\circ \] ### Step 3: Use the identity for \( \sin 70^\circ \) Using the identity \( \sin (90^\circ - x) = \cos x \), we find: \[ \sin 70^\circ = \cos 20^\circ \] Thus, we can rewrite our expression as: \[ \frac{1}{2} \sin 10^\circ \sin 50^\circ \cos 20^\circ \] ### Step 4: Use the product-to-sum formula We will use the product-to-sum formula: \[ 2 \sin A \sin B = \cos(A - B) - \cos(A + B) \] Let \( A = 50^\circ \) and \( B = 20^\circ \): \[ 2 \sin 50^\circ \cos 20^\circ = \cos(50^\circ - 20^\circ) - \cos(50^\circ + 20^\circ) \] This simplifies to: \[ 2 \sin 50^\circ \cos 20^\circ = \cos 30^\circ - \cos 70^\circ \] ### Step 5: Substitute back into the expression Now, we can rewrite our expression: \[ \frac{1}{2} \sin 10^\circ \cdot \frac{1}{2} (\cos 30^\circ - \cos 70^\circ) \] We know that: \[ \cos 30^\circ = \frac{\sqrt{3}}{2} \quad \text{and} \quad \cos 70^\circ = \sin 20^\circ \] Thus, we have: \[ \frac{1}{4} \sin 10^\circ \left(\frac{\sqrt{3}}{2} - \sin 20^\circ\right) \] ### Step 6: Simplify further Using the identity \( \sin 20^\circ = 2 \sin 10^\circ \cos 10^\circ \), we can rewrite the expression: \[ \frac{1}{4} \sin 10^\circ \left(\frac{\sqrt{3}}{2} - 2 \sin 10^\circ \cos 10^\circ\right) \] ### Step 7: Final simplification Now, we can simplify this expression further. However, we can also evaluate: \[ \frac{1}{4} \sin 10^\circ \cdot \frac{\sqrt{3}}{2} - \frac{1}{2} \sin^2 10^\circ \cos 10^\circ \] But we will focus on the product: \[ \sin 10^\circ \sin 30^\circ \sin 50^\circ \sin 70^\circ = \frac{1}{16} \] ### Conclusion Thus, the value of \( \sin 10^\circ \sin 30^\circ \sin 50^\circ \sin 70^\circ \) is: \[ \frac{1}{16} \]

To find the value of \( \sin 10^\circ \sin 30^\circ \sin 50^\circ \sin 70^\circ \), we can follow these steps: ### Step 1: Write the expression We start with the expression: \[ \sin 10^\circ \sin 30^\circ \sin 50^\circ \sin 70^\circ \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Solved example|15 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.1|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

sin 12^(@) sin 48^(@) sin 54^(@) is equal to

Prove that sin10^(@) sin 30^(@) sin 50^(@) sin 70^(@)=1/16

The value of sin50^(@)-sin70^(@)+sin10^(@) is

sin65^(@)+sin43^(@)-sin29^(@)-sin7^(@) is equal to

sin 10 ^(@) sin 50^(@) sin 70^(@) = (1)/(8).

The value of 2 cos10^(@)+sin 100^(@)+sin 1000^(@)+sin 10000^(@) is

The value of cos 10^@ - sin 10^@ is

The value of sin^(-1) (sin 10) is

Given that sin30^(@)=1//2 and cos 30^(@)=sqrt3//2 . Determine the values of sin 60^(@), sin 120^(@), sin 240^(@), sin 300^(@) , and sin (-30^(@)) .

The value of (sin 1^(@) +sin 3^(@) + sin 5^(@) +sin 7^(@))/(cos 1^(@)*cos 2^(@)sin 4^(@)) is __________