Home
Class 12
MATHS
The value of tan 20^(@) tan 40^(@) tan 8...

The value of `tan 20^(@) tan 40^(@) tan 80^(@)` is equal to

A

`tan 60^(@)`

B

`cot 60^(@)`

C

`tan 45^(@)`

D

`tan 80^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan 20^\circ \tan 40^\circ \tan 80^\circ \), we can use the properties of tangent and some trigonometric identities. ### Step-by-Step Solution: 1. **Express \( \tan 40^\circ \) and \( \tan 80^\circ \)**: We can rewrite \( \tan 40^\circ \) and \( \tan 80^\circ \) using the tangent subtraction and addition formulas: \[ \tan 40^\circ = \tan(60^\circ - 20^\circ) \] \[ \tan 80^\circ = \tan(60^\circ + 20^\circ) \] 2. **Use the tangent subtraction and addition formulas**: Using the tangent subtraction and addition formulas: \[ \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \] \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] We can set \( A = 60^\circ \) and \( B = 20^\circ \): \[ \tan 40^\circ = \frac{\tan 60^\circ - \tan 20^\circ}{1 + \tan 60^\circ \tan 20^\circ} \] \[ \tan 80^\circ = \frac{\tan 60^\circ + \tan 20^\circ}{1 - \tan 60^\circ \tan 20^\circ} \] 3. **Substituting \( \tan 60^\circ \)**: We know that \( \tan 60^\circ = \sqrt{3} \). So we can substitute this value into our equations: \[ \tan 40^\circ = \frac{\sqrt{3} - \tan 20^\circ}{1 + \sqrt{3} \tan 20^\circ} \] \[ \tan 80^\circ = \frac{\sqrt{3} + \tan 20^\circ}{1 - \sqrt{3} \tan 20^\circ} \] 4. **Multiply all three tangents**: Now we can multiply \( \tan 20^\circ \), \( \tan 40^\circ \), and \( \tan 80^\circ \): \[ \tan 20^\circ \tan 40^\circ \tan 80^\circ = \tan 20^\circ \cdot \left( \frac{\sqrt{3} - \tan 20^\circ}{1 + \sqrt{3} \tan 20^\circ} \right) \cdot \left( \frac{\sqrt{3} + \tan 20^\circ}{1 - \sqrt{3} \tan 20^\circ} \right) \] 5. **Using the property of tangent**: There is a known property: \[ \tan A \tan(60^\circ - A) \tan(60^\circ + A) = \tan 3A \] Applying this property with \( A = 20^\circ \): \[ \tan 20^\circ \tan 40^\circ \tan 80^\circ = \tan 60^\circ \] 6. **Final answer**: Since \( \tan 60^\circ = \sqrt{3} \), we conclude: \[ \tan 20^\circ \tan 40^\circ \tan 80^\circ = \sqrt{3} \] ### Final Result: The value of \( \tan 20^\circ \tan 40^\circ \tan 80^\circ \) is \( \sqrt{3} \).

To find the value of \( \tan 20^\circ \tan 40^\circ \tan 80^\circ \), we can use the properties of tangent and some trigonometric identities. ### Step-by-Step Solution: 1. **Express \( \tan 40^\circ \) and \( \tan 80^\circ \)**: We can rewrite \( \tan 40^\circ \) and \( \tan 80^\circ \) using the tangent subtraction and addition formulas: \[ \tan 40^\circ = \tan(60^\circ - 20^\circ) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Solved example|15 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.1|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

The value of tan20^(@)+2 tan50^(@)-tan70^(@), is

tan 20^(@) tan 40^(@) tan 80^(@) = tan 60^(@)

Value of tan 130^(@). Tan 140^(@) .

65. The value of tan 20 tan 40 tan 80 is

Find the value of : tan30^(@)tan60^(@)

Find the value of : tan30^(@)tan60^(@)

The value of tan^(-1)tan(-6) is

The value of tan9^@-tan2 7^@-tan6 3^@+tan8 1^@ is equal to

The value of tan7 1/2^@ equal to

The value of tan840^(@) is equal to