Home
Class 12
MATHS
In any triangle ABC, prove that sin^3Aco...

In any triangle ABC, prove that `sin^3Acos(B-C)+sin^3Bcos(C-A)+sin^3Ccos(A-B)`=`3sinAsinBsinC`

Text Solution

Verified by Experts

`LHS =sin^(2)A(B+C)cos(B-C)+sin^(2)Bsin(C+A)`
`cos(C-A)+sin^(2)Csin(A+B)cos(A-B)`
`=(1)/(2)sin^(2)A(sin 2B+sin2C)+(1)/(2)sin^(2)B`
`(Sin 2C+sin2A)+(1)/(2)sin^(2)C(sin 2A+sin2B)`
`=sin^(2)A(sin B cos B+sin Ccos C)`
`+sin^(2)B(sin C cos C+sin A cos A)`
`+sin^(2)C(sin A cos A +sin B cos B)`
`=sin A sin B (sin A cos B+cosB +cos A sin B)`
`+sin B sin C (sin B cos C+cos B sin C)`
`+sin C sin A (sin A cos C+cos A sin C)`
`=sin A + sin B sin (A+B)+sin B sin C sin (B+C)`
`+sin C sin A sin (A+C)`
`=3 sin A sin C=RHS`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Solved example|15 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.1|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

In any triangle A B C , prove that: a^3cos(B-C)+b^3cos(C-A)+c^3cos(A-B)=3a b c

In a DeltaA B C ,\ prove that , sin^3Acos(B-C)+sin^3B cos(C-A)+sin^3\ C cos(A-B) = 3\ sin A\ sin B \ sin C

In any triangle A B C , prove that: \ asin(B-C)+b sin(C-A)+csin(A-B)=0

In any triangle A B C , prove that: acos((B-C)/2)=(b+c)sin(A/2)

In any triangle A B C , prove that: \ a^3sin(B-C)+b^3sin(C-A)+c^3sin(A-B)=0

In a DeltaABC , prove that : sin3A sin(B-C)+sin3B sin(C-A) + sin3C sin (A-B)=0 .

For any triangle ABC, prove that sin(B-C)/2=(b-c) /a ( cosA/2)

In any triangle ABC, prove that a^(3) cos(B - C) + b^(3) cos (C - A) + c^(3) cos (A - B) = 3 abc

In any triangle A B C prove that: sin((B-C)/2)=((b-c)/a)cosA/2

For any triangle ABC, prove that sin(B-C)/sin(B+C)=(b^2-c^2)/(a^2)