Home
Class 12
MATHS
If x+y+z=pi/2, then prove that |sinxsiny...

If `x+y+z=pi/2,` then prove that `|sinxsinysinzcosxcosycoszcos^3xcos^y ycos^3z|=0`

Text Solution

Verified by Experts

D=`|{:(sinx,siny,sinz),(cosx,cosy,cosz),(cos^(3)x,cos^(3)y,cos^(3)z):}|`
Expanding along `R_(3)`, we get
`D=sum cos^(3)x sin(y-z)`
Given `x+y+z=(pi)/(2)`
`therefore D=sumsin^(3)(y+z)sin(y-z)`
`=sumsin^(2)(y+z)sin(y+z)sin(y-z)`
`=sum (1-sin^(2)x)(sin^(2)y-sin^(2)z)`
=0
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Solved example|15 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.1|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If x+y+z=pi/2, then prove that |[sinx,siny,sinz],[cosx,cosy,cosz],[cos^3x,cos^3 y,cos^3z]|=0

If x+y+z= pi/2 , prove that : cos(x-y-z) + cos(y-z-x) + cos (z-x-y)-4cosx cosy cosz=0

If cos^-1 x+cos^-1 y+cos^-1 z=pi and x+y+z= 3/2, then prove that x=y=z

If 2^x=3^y=6^(-z) prove that 1/x+1/y+1/z=0

If a x1 2+b y1 2+c z1 2=a x1 2+b y2 2+c z2 2=a x3 2+b y3 2+c z3 2=d\ a n d\ a x_2x_3+b y_2y_3+c z_2z_3=a x_3x_1+b y_3y_1+c z_3z_1=a x_1x_2+b y_1y_2+c z_1z_2=f then prove that |x_1y_1z_1x_2y_2z_1x_3y_3z_3|=(d-f)[(d+2f)/(a b c)]^(//2)(a , b ,\ c!=0)

Without expanding prove that: |[x+y, y+z, z+x],[z ,x, y],[1, 1 ,1]|=0 .

If x , y ,z in [-1,1] such that cos^(-1)x+cos^1y+cos^(-1)z=3pi, then find the values of (1) x y+y z+z y and (2) x(y+z)+y(z+x)+z(x+y)

If x , y ,z in [-1,1] such that cos^(-1)x+cos^1y+cos^(-1)z=3pi, then find the values of (1). x y+y z+z y and (2). x(y+z)+y(z+x)+z(x+y)

If a x_1^2+b y_1^2+c z_1^2=a x_2 ^2+b y_2 ^2+c z_2 ^2=a x_3 ^2+b y_3 ^2+c z_3 ^2=d ,a x_2 x_3+b y_2y_3+c z_2z_3=a x_3x_1+b y_3y_1+c z_3z_1=a x_1x_2+b y_1y_2+c z_1z_2=f, then prove that |(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3,y_3,z_3)|=(d-f){((d+2f))/(a b c)}^(1//2)

If x , y ,z in [-1,1] such that cos^(-1)x+cos^1y+cos^(-1)z=3pi, then find the values of (1) x y+y z+z x and (2) x(y+z)+y(z+x)+z(x+y)