Home
Class 12
MATHS
If sin A+cos2A=1//2 and cos A+sin2A=1//3...

If `sin A+cos2A=1//2` and `cos A+sin2A=1//3`. Then find the value of `sin 3A`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: Given: 1. \( \sin A + \cos 2A = \frac{1}{2} \) (Equation 1) 2. \( \cos A + \sin 2A = \frac{1}{3} \) (Equation 2) ### Step 1: Square both equations We will square both equations and then add them together. \[ (\sin A + \cos 2A)^2 + (\cos A + \sin 2A)^2 = \left(\frac{1}{2}\right)^2 + \left(\frac{1}{3}\right)^2 \] ### Step 2: Expand the squares Using the identity \( (a + b)^2 = a^2 + b^2 + 2ab \): \[ \sin^2 A + \cos^2 2A + 2\sin A \cos 2A + \cos^2 A + \sin^2 2A + 2\cos A \sin 2A = \frac{1}{4} + \frac{1}{9} \] ### Step 3: Simplify the right-hand side Finding a common denominator for \( \frac{1}{4} \) and \( \frac{1}{9} \): \[ \frac{1}{4} = \frac{9}{36}, \quad \frac{1}{9} = \frac{4}{36} \] \[ \Rightarrow \frac{1}{4} + \frac{1}{9} = \frac{9 + 4}{36} = \frac{13}{36} \] ### Step 4: Use Pythagorean identities We know that \( \sin^2 A + \cos^2 A = 1 \) and \( \sin^2 2A + \cos^2 2A = 1 \): \[ 1 + 1 + 2(\sin A \cos 2A + \cos A \sin 2A) = \frac{13}{36} \] ### Step 5: Combine terms This simplifies to: \[ 2 + 2(\sin A \cos 2A + \cos A \sin 2A) = \frac{13}{36} \] ### Step 6: Isolate the sine term Subtract 2 from both sides: \[ 2(\sin A \cos 2A + \cos A \sin 2A) = \frac{13}{36} - 2 \] Convert 2 to a fraction with a denominator of 36: \[ 2 = \frac{72}{36} \Rightarrow \frac{13}{36} - \frac{72}{36} = \frac{13 - 72}{36} = \frac{-59}{36} \] ### Step 7: Divide by 2 Now divide both sides by 2: \[ \sin A \cos 2A + \cos A \sin 2A = \frac{-59}{72} \] ### Step 8: Use the sine addition formula Recognizing that \( \sin A \cos 2A + \cos A \sin 2A = \sin(A + 2A) = \sin(3A) \): \[ \sin(3A) = \frac{-59}{72} \] ### Final Answer Thus, the value of \( \sin 3A \) is: \[ \sin 3A = \frac{-59}{72} \]

To solve the problem, we will follow these steps: Given: 1. \( \sin A + \cos 2A = \frac{1}{2} \) (Equation 1) 2. \( \cos A + \sin 2A = \frac{1}{3} \) (Equation 2) ### Step 1: Square both equations We will square both equations and then add them together. ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.2|7 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.3|13 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Solved example|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Find the values of sin (cos−1 3/5)

If cos A =(1)/(3) ,then find the values of sin A and tan A.

If 3 sin A = 4 cos A , find the value of : sin A

If cosA+cos^2A=1, find the value of sin^2A+sin^4A.

If tan x =1(1)/3 , find the value of : 4 sin^2x -3 cos^2x +2

If sin A + sin^2 A + sin^3 A = 1 , then find the value of cos^6 A-4 cos^4 A + 8 cos^2 A .

If sinA=-4/5 and A lies in 3rd quadrant, find the values of (i) sin2A ii) cos2A .

Find the value of sin [ arc cos (- 1/2)]

If sin theta_1 + sintheta_2 + sin theta_3 = 3 then find the value of cos theta_1 + cos theta_2 + cos theta_3.

If cos A = 4 sin A , find the value of , 4 cos ^(2) A - 3 sin ^(2) A + 2