Home
Class 12
MATHS
Find the value of ((cos1^(@)+sin1^(@))(c...

Find the value of `((cos1^(@)+sin1^(@))(cos2^(@)+sin2^(@))(cos3^(@)+sin3^(@))...(cos 45^@sin45^@))/( cos1^(@)cos2^(@)cos3^(@)...cos45^(@)) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we start with the expression: \[ \frac{( \cos 1^\circ + \sin 1^\circ )( \cos 2^\circ + \sin 2^\circ )( \cos 3^\circ + \sin 3^\circ ) \ldots ( \cos 45^\circ + \sin 45^\circ )}{\cos 1^\circ \cos 2^\circ \cos 3^\circ \ldots \cos 45^\circ} \] ### Step 1: Rewrite Each Term Using the identity \(\sin \theta = \cos(90^\circ - \theta)\), we can rewrite each term in the numerator: \[ \cos k^\circ + \sin k^\circ = \cos k^\circ + \cos(90^\circ - k^\circ) \] ### Step 2: Pair Terms We can pair the terms in the numerator: \[ (\cos 1^\circ + \sin 1^\circ)(\cos 89^\circ + \sin 89^\circ), \quad (\cos 2^\circ + \sin 2^\circ)(\cos 88^\circ + \sin 88^\circ), \ldots, (\cos 44^\circ + \sin 44^\circ)(\cos 46^\circ + \sin 46^\circ), \quad \text{and } (\cos 45^\circ + \sin 45^\circ) \] ### Step 3: Use the Cosine Sum Identity Using the cosine sum identity: \[ \cos A + \cos B = 2 \cos \left( \frac{A+B}{2} \right) \cos \left( \frac{A-B}{2} \right) \] We can apply this to each pair: \[ \cos k^\circ + \sin k^\circ = \sqrt{2} \cos \left( k^\circ - 45^\circ \right) \] ### Step 4: Simplify the Numerator Thus, the numerator becomes: \[ \sqrt{2}^{45} \cdot \prod_{k=1}^{45} \cos \left( k^\circ - 45^\circ \right) \] ### Step 5: Evaluate the Denominator The denominator remains: \[ \cos 1^\circ \cos 2^\circ \cos 3^\circ \ldots \cos 45^\circ \] ### Step 6: Combine the Results Now we can combine the results: \[ \frac{\sqrt{2}^{45} \cdot \prod_{k=1}^{45} \cos \left( k^\circ - 45^\circ \right)}{\prod_{k=1}^{45} \cos k^\circ} \] ### Step 7: Cancel Terms Notice that \(\cos(k^\circ - 45^\circ)\) can be rewritten in terms of \(\cos k^\circ\) and \(\sin k^\circ\). After simplification, we will find that many terms cancel out. ### Step 8: Final Calculation After all cancellations, we will be left with: \[ \frac{2^{22.5}}{\cos 45^\circ} = \frac{2^{22.5}}{\frac{1}{\sqrt{2}}} = 2^{23} \] ### Final Answer Thus, the final value is: \[ 2^{23} \]

To solve the given problem step by step, we start with the expression: \[ \frac{( \cos 1^\circ + \sin 1^\circ )( \cos 2^\circ + \sin 2^\circ )( \cos 3^\circ + \sin 3^\circ ) \ldots ( \cos 45^\circ + \sin 45^\circ )}{\cos 1^\circ \cos 2^\circ \cos 3^\circ \ldots \cos 45^\circ} \] ### Step 1: Rewrite Each Term Using the identity \(\sin \theta = \cos(90^\circ - \theta)\), we can rewrite each term in the numerator: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.2|7 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.3|13 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Solved example|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Find the value of (sin30^(@))/(cos^(2)45^(@))-tan^(2)60^(@)+3cos90^(@)+sin0^(@) .

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Find the value of cos ^(2) 45 ^(@) - sin ^(2) 15 ^(@).

The value of (sin 1^(@) +sin 3^(@) + sin 5^(@) +sin 7^(@))/(cos 1^(@)*cos 2^(@)sin 4^(@)) is __________

Find the value of [(sin^2 2 2^(@)+sin^2 6 8^(@))/(cos^2 2 2^(@)+cos^2 6 8^(@))+sin^2 6 3^(@)+cos6 3^(@)sin2 7^(@)]

Evaluate cos45^(@)cos30^(@)+sin45^(@)sin30^(@) .

Evaluate: ((cos 47^(@))/(sin 43^(@)))^(2)+((sin72^(2))/(cos 18^(@)))^(2)-2cos^(2)45^(@)

Evaluate: ((sin 77^(@))/(cos 13^(@)))^(2)+((cos 77^(@))/(sin 13^(@)))^(2)-2cos^(2)45^(@)

Find the principal value of cos^(-1){sin"[cos^(-1)(1/2)]}