Home
Class 12
MATHS
Find the maximum value of sqrt(3)sinx+co...

Find the maximum value of `sqrt(3)sinx+cosxa n dx` for which a maximum value occurs.

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \( \sqrt{3} \sin x + \cos x \), we can follow these steps: ### Step 1: Rewrite the expression We can express \( \sqrt{3} \sin x + \cos x \) in a form that makes it easier to analyze. We can factor it out as follows: \[ \sqrt{3} \sin x + \cos x = 2 \left( \frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right) \] ### Step 2: Identify coefficients Now, we recognize that \( \frac{\sqrt{3}}{2} \) and \( \frac{1}{2} \) correspond to the sine and cosine of specific angles. Specifically, we can relate these to the sine of an angle: \[ \frac{\sqrt{3}}{2} = \sin\left(\frac{\pi}{3}\right) \quad \text{and} \quad \frac{1}{2} = \cos\left(\frac{\pi}{3}\right) \] ### Step 3: Use the angle addition formula Using the angle addition formula for sine, we can rewrite the expression as: \[ \sqrt{3} \sin x + \cos x = 2 \left( \sin\left(x + \frac{\pi}{3}\right) \right) \] ### Step 4: Determine the maximum value The sine function achieves its maximum value of 1. Therefore, the maximum value of our expression occurs when: \[ \sin\left(x + \frac{\pi}{3}\right) = 1 \] ### Step 5: Solve for \( x \) This occurs when: \[ x + \frac{\pi}{3} = \frac{\pi}{2} + 2k\pi \quad \text{for integer } k \] Solving for \( x \): \[ x = \frac{\pi}{2} - \frac{\pi}{3} + 2k\pi = \frac{3\pi}{6} - \frac{2\pi}{6} + 2k\pi = \frac{\pi}{6} + 2k\pi \] ### Step 6: Calculate the maximum value Substituting back into the expression for the maximum value: \[ \text{Maximum value} = 2 \cdot 1 = 2 \] ### Final Result Thus, the maximum value of \( \sqrt{3} \sin x + \cos x \) is \( 2 \), and it occurs at \( x = \frac{\pi}{6} + 2k\pi \). ---

To find the maximum value of the expression \( \sqrt{3} \sin x + \cos x \), we can follow these steps: ### Step 1: Rewrite the expression We can express \( \sqrt{3} \sin x + \cos x \) in a form that makes it easier to analyze. We can factor it out as follows: \[ \sqrt{3} \sin x + \cos x = 2 \left( \frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.2|7 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.3|13 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Solved example|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Find the maximum value of sqrt(3)sinx+cosx and x for which a maximum value occurs.

Find the maximum value of sinx.cosx

The maximum value of 3 cos x+4sinx+5, is

Find the maximum value of the function x^(1//x) .

Find the maximum value of the function x * e^(-x) .

Find the maximum value of 4sin^2x+3cos^2x+sinx/2+cosx/2dot

Show that The maximum value of sinx. cosx in R is 1/2

Find the value of int_0^(2pi) |sinx|dx

Evaluate: int1/(sqrt(3)sinx+cosx)dx

Evaluate: int1/(sqrt(3)sinx+cosx)dx