Home
Class 12
MATHS
The maximum value of 1+sin(pi/4+theta)+2...

The maximum value of `1+sin(pi/4+theta)+2cos(pi/4-theta)` for real values of `theta` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \(1 + \sin\left(\frac{\pi}{4} + \theta\right) + 2\cos\left(\frac{\pi}{4} - \theta\right)\), we can follow these steps: ### Step 1: Rewrite the trigonometric functions We can use the angle addition and subtraction formulas for sine and cosine: - \(\sin(a + b) = \sin a \cos b + \cos a \sin b\) - \(\cos(a - b) = \cos a \cos b + \sin a \sin b\) Applying these to our expression: \[ \sin\left(\frac{\pi}{4} + \theta\right) = \sin\frac{\pi}{4} \cos\theta + \cos\frac{\pi}{4} \sin\theta \] \[ \cos\left(\frac{\pi}{4} - \theta\right) = \cos\frac{\pi}{4} \cos\theta + \sin\frac{\pi}{4} \sin\theta \] ### Step 2: Substitute the values of \(\sin\frac{\pi}{4}\) and \(\cos\frac{\pi}{4}\) Since \(\sin\frac{\pi}{4} = \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}\), we can substitute these values: \[ \sin\left(\frac{\pi}{4} + \theta\right) = \frac{1}{\sqrt{2}} \cos\theta + \frac{1}{\sqrt{2}} \sin\theta \] \[ \cos\left(\frac{\pi}{4} - \theta\right) = \frac{1}{\sqrt{2}} \cos\theta + \frac{1}{\sqrt{2}} \sin\theta \] ### Step 3: Substitute back into the original expression Now substituting these back into the original expression: \[ 1 + \left(\frac{1}{\sqrt{2}} \cos\theta + \frac{1}{\sqrt{2}} \sin\theta\right) + 2\left(\frac{1}{\sqrt{2}} \cos\theta + \frac{1}{\sqrt{2}} \sin\theta\right) \] This simplifies to: \[ 1 + \frac{1}{\sqrt{2}} \cos\theta + \frac{1}{\sqrt{2}} \sin\theta + \frac{2}{\sqrt{2}} \cos\theta + \frac{2}{\sqrt{2}} \sin\theta \] \[ = 1 + \left(\frac{1 + 2}{\sqrt{2}}\right) \cos\theta + \left(\frac{1 + 2}{\sqrt{2}}\right) \sin\theta \] \[ = 1 + \frac{3}{\sqrt{2}} \cos\theta + \frac{3}{\sqrt{2}} \sin\theta \] ### Step 4: Factor out the common term We can factor out \(\frac{3}{\sqrt{2}}\): \[ = 1 + \frac{3}{\sqrt{2}} \left(\cos\theta + \sin\theta\right) \] ### Step 5: Use the identity for maximum value The expression \(\cos\theta + \sin\theta\) can be rewritten using the identity: \[ \cos\theta + \sin\theta = \sqrt{2} \sin\left(\theta + \frac{\pi}{4}\right) \] The maximum value of \(\sin\) function is 1, hence: \[ \cos\theta + \sin\theta \leq \sqrt{2} \] ### Step 6: Substitute the maximum value back Thus, the maximum value of our expression becomes: \[ 1 + \frac{3}{\sqrt{2}} \cdot \sqrt{2} = 1 + 3 = 4 \] ### Final Answer The maximum value of \(1 + \sin\left(\frac{\pi}{4} + \theta\right) + 2\cos\left(\frac{\pi}{4} - \theta\right)\) is \(\boxed{4}\). ---

To find the maximum value of the expression \(1 + \sin\left(\frac{\pi}{4} + \theta\right) + 2\cos\left(\frac{\pi}{4} - \theta\right)\), we can follow these steps: ### Step 1: Rewrite the trigonometric functions We can use the angle addition and subtraction formulas for sine and cosine: - \(\sin(a + b) = \sin a \cos b + \cos a \sin b\) - \(\cos(a - b) = \cos a \cos b + \sin a \sin b\) Applying these to our expression: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.2|7 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.3|13 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Solved example|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

The maximum value of 1+sin((pi)/(6)+theta)+2cos((pi)/(3)-theta) for real values of theta is

Find the maximum value of 1+sin(pi/4+theta) + 2cos(pi/4-theta) .

The maximum values of 3 costheta+5sin(theta-(pi)/(6)) for any real value of theta is:

If A = sin^2 theta+ cos^4 theta , then for all real values of theta

The value of cot((pi)/(4)+theta)cot((pi)/(4)-theta) is

If x=cos^2theta+sin^4theta then for all real values of theta

Find maximum and minium value of 5costheta+3sintheta(theta+pi/6) for all real values of theta .

If sin(pi cos theta) = cos(pi sin theta) , then the value of cos(theta+- pi/4) is

Find the maximum and minimum value of 5cos theta+3sin(theta+(pi)/(6)) for all real values of theta . .

For theta in(0,pi/2) , the maximum value of sin(theta+pi/6)+cos(theta+pi/6) is attained at theta =