Home
Class 12
MATHS
show that 2^(sin x)+2^(cos x)ge2^(1-(1)/...

show that `2^(sin x)+2^(cos x)ge2^(1-(1)/sqrt(2))`

Text Solution

AI Generated Solution

To prove the inequality \( 2^{\sin x} + 2^{\cos x} \geq 2^{1 - \frac{1}{\sqrt{2}}} \), we can follow these steps: ### Step 1: Apply the Arithmetic Mean-Geometric Mean Inequality (AM-GM) We start by applying the AM-GM inequality to the two positive quantities \( 2^{\sin x} \) and \( 2^{\cos x} \): \[ \frac{2^{\sin x} + 2^{\cos x}}{2} \geq \sqrt{2^{\sin x} \cdot 2^{\cos x}} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.2|7 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.3|13 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Solved example|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Find the most general solution for 2^(sin x )+2^( cos x )=2^((1-(1/sqrt2)))

Show that: sin 50^0cos85^0=(1-sqrt(2)sin35^0)/(2sqrt(2))

Prove that cos ^(-1) x = 2 sin ^(-1).sqrt(1-x)/(2)

If x in (0, (pi)/(2)) , then show that cos^(-1) ((7)/(2) (1 + cos 2 x) + sqrt((sin^(2) x - 48 cos^(2) x)) sin x) = x - cos^(-1) (7 cos x)

The relation int(sin2x+cos2x)=(1)/(sqrt(2))sin(2x-a)+c is true for

Show that: sin 50^0cos95^0=(sqrt(2)sin35^0-1)/(2sqrt(2))

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

Show that(i) sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1

If x in (0,pi/2), then show that cos^(-1)(7/2(1+cos2x)+sqrt((sin^2x-48cos^2x))sinx)=x-cos^(-1)(7cosx)

The minimum value of x which satisfies the inequality (sin^(-1)x)^(2)ge(cos^(-1)x)^(2) is