Home
Class 12
MATHS
If P+Q=(7pi)/(6), then find the value of...

If `P+Q=(7pi)/(6)`, then find the value of `(sqrt(3)+tanP)xx(sqrt(3)+tanQ)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((\sqrt{3} + \tan P)(\sqrt{3} + \tan Q)\) given that \(P + Q = \frac{7\pi}{6}\). ### Step 1: Write down the given equation We start with the equation: \[ P + Q = \frac{7\pi}{6} \] ### Step 2: Apply the tangent function Taking the tangent of both sides, we have: \[ \tan(P + Q) = \tan\left(\frac{7\pi}{6}\right) \] ### Step 3: Use the tangent addition formula Using the tangent addition formula: \[ \tan(P + Q) = \frac{\tan P + \tan Q}{1 - \tan P \tan Q} \] So we can write: \[ \frac{\tan P + \tan Q}{1 - \tan P \tan Q} = \tan\left(\frac{7\pi}{6}\right) \] ### Step 4: Calculate \(\tan\left(\frac{7\pi}{6}\right)\) We know that: \[ \tan\left(\frac{7\pi}{6}\right) = \tan\left(\pi + \frac{\pi}{6}\right) = \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \] Thus, we have: \[ \frac{\tan P + \tan Q}{1 - \tan P \tan Q} = \frac{1}{\sqrt{3}} \] ### Step 5: Cross-multiply Cross-multiplying gives us: \[ \sqrt{3}(\tan P + \tan Q) = 1 - \tan P \tan Q \] This can be rearranged to form our first equation: \[ \sqrt{3}\tan P + \sqrt{3}\tan Q + \tan P \tan Q = 1 \quad \text{(Equation 1)} \] ### Step 6: Expand the expression Now we need to evaluate: \[ (\sqrt{3} + \tan P)(\sqrt{3} + \tan Q) \] Expanding this gives: \[ = \sqrt{3} \cdot \sqrt{3} + \sqrt{3} \tan Q + \tan P \sqrt{3} + \tan P \tan Q \] \[ = 3 + \sqrt{3}(\tan P + \tan Q) + \tan P \tan Q \] ### Step 7: Substitute from Equation 1 From Equation 1, we know that: \[ \sqrt{3}(\tan P + \tan Q) + \tan P \tan Q = 1 \] Substituting this into our expression gives: \[ = 3 + 1 = 4 \] ### Final Answer Thus, the value of \((\sqrt{3} + \tan P)(\sqrt{3} + \tan Q)\) is: \[ \boxed{4} \]

To solve the problem, we need to find the value of \((\sqrt{3} + \tan P)(\sqrt{3} + \tan Q)\) given that \(P + Q = \frac{7\pi}{6}\). ### Step 1: Write down the given equation We start with the equation: \[ P + Q = \frac{7\pi}{6} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.3|13 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.4|26 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.1|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Find the value of sqrt(3x+7) when x=3

find the value of ( 3 + sqrt3 ) xx ( 2 + sqrt2 )

If p/q=(2/3)^2-:(6/7)^0, find the value of (q/p)^3

Using binomial theorem, write the value of (a+b)^(6) + (a-b)^(6) and hence find the value of ( sqrt(3) + sqrt(2) )^(6) + ( sqrt(3) - sqrt(2) )^(6) .

The value of log_((8-3sqrt7))(8+3sqrt7) is

If a=1+sqrt 7 , find the value of -6/a

4sqrt(6)xx3sqrt(24) = :-

Evaluate : sqrt(3^(2) xx 6^(3) xx 24)

Find the value of : 1/2 p^(2) xx 4p^(2)q xx(-3 p)

sqrt3 xx sqrt3