Home
Class 12
MATHS
If t a nbeta=(ns inalphacosalpha)/(1-ns ...

If `t a nbeta=(ns inalphacosalpha)/(1-ns in^2alpha)` , show that `tan(alpha-beta)=(1-n)t a nalphadot`

Text Solution

Verified by Experts

`tan beta=(nsin alpha cos alpha)/(1-n sin^(2)alpha)=([(nsinalphacos alpha)/(cos^(2)alpha)])/([(1)/(cos^(2)alpha)-(n sin^(2)alpha)/(cos^(2)alpha)])`
[Dividing numerator and enominator by `cos^(2)alpha`]
`=(n tan alpha)/(sec^(2)alpha-n tan^(2)alpha)=(n tan alpha)/(1+tan^(2)alpha-n tan^(2)alpha)`
`=(n tan alpha)/(1+(1-n)tan^(2)alpha)`
Now, `tan(alpha-beta)=(tan alpha-tan beta)/(1+tan alpha tan beta)`
`=[(tan alpha-(n tan alpha)/(1+(1-n)tan^(2)alpha))/(1+tan alpha(n tan alpha)/(1+(1-n)tan^(2)alpha))]`(From Eq. i)
`=(tan alpha+(1-n)tan^(3)alpha-n tan alpha)/(1+(1-n)(tan^(2)alpha+n tan^(2)alpha)`
`=((1-n)tan alpha+(1-n)tan^(3)alpha)/(1+tan^(2)alpha)`
`=(1-n)tan alpha`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.3|13 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.4|26 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.1|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If t a nbeta=(nsinalphacosalpha)/(1-nsin^2alpha) , show that tan(alpha-beta)=(1-n)t a nalphadot

If t a nbeta=(nsinalphacosalpha)/(1-nsin^2alpha) , show that tan(alpha-beta)=(1-n)t a nalphadot

If costheta=(cosalpha cosbeta)/(1-sinalphasinbeta) , prove that one value of t a ntheta/2=(t a nalpha/2-t a nbeta/2)/(1-t a nalpha/2 t a nbeta/2)

If cos theta=(cos alpha cos beta)/(1-sin alpha sin beta), prove that one value of tan (theta/2)=(tan (alpha/2)-tan (beta/2))/(1-tan (alpha/2) tan (beta/2)).

If cos theta=(cos alpha cos beta)/(1-sin alpha sin beta), prove that one value of (tan) theta/2=(tan alpha/2-tan beta/2)/(1-t a n alpha/2 tan beta/2).

If t a nalpha=x+1,tanbeta=x-1, show that 2cot(alpha-beta)=x^2dot

(sinalpha+sinbeta-sin(alpha+beta))/(sinalpha+sinbeta+sin(alpha+beta))=tan(alpha/2)tan(beta/2)

(1+tan alpha tan beta)^2 + (tan alpha - tan beta)^2 =

if tan alpha = 2tanbeta show that (sin(alpha+beta))/(sin(alpha-beta)) = 3

If : sin (alpha + beta)=1 and sin (alpha-beta)=(1)/(2), "then" : tan (alpha+2beta)*tan(2alpha+beta)=