Home
Class 12
MATHS
If cosA=3/4, then 32 sin (A/2) sin ((5...

If cosA=3/4, then 32 sin (A/2) sin ((5A) /2)= ------------- (A) √11 (B) -√11 (C) 11 (D) -11

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 32 \sin\left(\frac{A}{2}\right) \sin\left(\frac{5A}{2}\right) \) given that \( \cos A = \frac{3}{4} \). ### Step-by-Step Solution: 1. **Use the Double Angle Identity**: We can use the identity for the product of sines: \[ 2 \sin x \sin y = \cos(x-y) - \cos(x+y) \] Here, we will let \( x = \frac{A}{2} \) and \( y = \frac{5A}{2} \). 2. **Rewrite the Expression**: Thus, we can rewrite: \[ 32 \sin\left(\frac{A}{2}\right) \sin\left(\frac{5A}{2}\right) = 16 \left(2 \sin\left(\frac{A}{2}\right) \sin\left(\frac{5A}{2}\right)\right) = 16 \left(\cos\left(\frac{A}{2} - \frac{5A}{2}\right) - \cos\left(\frac{A}{2} + \frac{5A}{2}\right)\right) \] 3. **Simplify the Angles**: Simplifying the angles: \[ \frac{A}{2} - \frac{5A}{2} = -2A \quad \text{and} \quad \frac{A}{2} + \frac{5A}{2} = 3A \] Therefore, we have: \[ 32 \sin\left(\frac{A}{2}\right) \sin\left(\frac{5A}{2}\right) = 16 \left(\cos(-2A) - \cos(3A)\right) \] Since \( \cos(-x) = \cos(x) \), this simplifies to: \[ 16 \left(\cos(2A) - \cos(3A)\right) \] 4. **Use Cosine Double Angle Formula**: We know: \[ \cos(2A) = 2\cos^2(A) - 1 \quad \text{and} \quad \cos(3A) = 4\cos^3(A) - 3\cos(A) \] Substituting \( \cos A = \frac{3}{4} \): \[ \cos(2A) = 2\left(\frac{3}{4}\right)^2 - 1 = 2 \cdot \frac{9}{16} - 1 = \frac{18}{16} - \frac{16}{16} = \frac{2}{16} = \frac{1}{8} \] \[ \cos(3A) = 4\left(\frac{3}{4}\right)^3 - 3\left(\frac{3}{4}\right) = 4 \cdot \frac{27}{64} - \frac{9}{4} = \frac{108}{64} - \frac{144}{64} = -\frac{36}{64} = -\frac{9}{16} \] 5. **Substitute Back**: Now substituting these values back: \[ 32 \sin\left(\frac{A}{2}\right) \sin\left(\frac{5A}{2}\right) = 16 \left(\frac{1}{8} - \left(-\frac{9}{16}\right)\right) = 16 \left(\frac{1}{8} + \frac{9}{16}\right) \] To add these fractions, we need a common denominator: \[ \frac{1}{8} = \frac{2}{16} \quad \text{so} \quad \frac{1}{8} + \frac{9}{16} = \frac{2}{16} + \frac{9}{16} = \frac{11}{16} \] Thus, \[ 32 \sin\left(\frac{A}{2}\right) \sin\left(\frac{5A}{2}\right) = 16 \cdot \frac{11}{16} = 11 \] ### Final Answer: The value is \( 11 \).

To solve the problem, we need to find the value of \( 32 \sin\left(\frac{A}{2}\right) \sin\left(\frac{5A}{2}\right) \) given that \( \cos A = \frac{3}{4} \). ### Step-by-Step Solution: 1. **Use the Double Angle Identity**: We can use the identity for the product of sines: \[ 2 \sin x \sin y = \cos(x-y) - \cos(x+y) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.5|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.6|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.3|13 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If cosA=(3)/(4) and k sin ((A)/(2))sin((5A)/(2))=(11)/(8) . Find k.

sin((-11pi)/3)

Show that (sin 5 A + 2 sin 8A + sin 11 A)/( sin 8A + 2 sin 11 A + sin 14 A) = (sin 8A)/(sin 11 A).

A d d4/(-11)\ a n d7/(11)

Show that ( sin 5A + 2 sin 8A + sin 11A ) /( sin 8 A +2sin 11A + sin 14A ) = (sin 8A)/( sin 11A)

Value of sin (-(11pi )/( 3)) is

If x real and y= (x^2-x+3)/(x+2) , then (A) yge1 (B) yge11 (C) yle-11 (D) -11ltylt1

Image of (1, 2, 3) w.r.t a plane is (-7/3,-4/3,-1/3) then which of the following points lie on the plane (A) (-1,1,-1) (B) (-1,-1,1) (C) (-1,-1,1) (D) (1,1,-1)

(5 1/4-3 1/3) = (a)(12/23) (b) 2 (c) (1 11/12) (d) (11/12)

Prove that tan ((3pi)/11) + 4 sin ((2pi)/11)=sqrt( 11) .

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Concept App. 3.4
  1. Prove that cos^(3)thetasin3theta+sin^(3)theta cos 3theta=(3)/(4)sin 4 ...

    Text Solution

    |

  2. (sin^2 3A)/(sin^2A)-(cos^2 3A)/(cos^2A)=

    Text Solution

    |

  3. Prove that (1+sec 2 theta)(1+sec 4 theta)(1+sec 8 theta)=(Tan 8theta)/...

    Text Solution

    |

  4. If in an isosceles triangle with base 'a', vertical angle 20^@ and lat...

    Text Solution

    |

  5. In DeltaABC, a = 3, b = 4 and c = 5, then value of sinA + sin2B + sin...

    Text Solution

    |

  6. If cosA=3/4, then 32 sin (A/2) sin ((5A) /2)= ------------- ...

    Text Solution

    |

  7. Find the value of (4cos^(2)9^(@)-1)(4cos^(2)27^(@)-1) (4cos^(2)81^(@...

    Text Solution

    |

  8. If theta is an acute angle and sin((theta)/(2))=sqrt((x-1)/(2x)) ,then...

    Text Solution

    |

  9. In a triangle ABC, if sin A sin(B-C)=sinC sin(A-B), then prove that co...

    Text Solution

    |

  10. Let a=(pi)/(7), then show that sin^(2)3a-sin^(2)a=sin2asin3a.

    Text Solution

    |

  11. Show that 1/(sin 10^@) - sqrt3/(cos 10^@) = 4

    Text Solution

    |

  12. Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + co...

    Text Solution

    |

  13. If tan x=(a)/(b) and tan 2x=(b)/(a+b) find the smallest positive value...

    Text Solution

    |

  14. tantheta+tan(6 0^0+theta)+tan(12 0^0+theta)=3tan3theta

    Text Solution

    |

  15. If A=110^(@), then prove that (1+sqrt(1+tan^(2)2A))/(tan2A)=-tan A.

    Text Solution

    |

  16. If alpha and beta are the two different roots of equations a cos theta...

    Text Solution

    |

  17. If tan beta=cos theta tan alpha, then prove that tan^(2)""(theta)/(2)=...

    Text Solution

    |

  18. If cos theta=a/(b+c), cos phi= b/(a+c) and cos psi=c/(a+b) where theta...

    Text Solution

    |

  19. If cos theta= (cos alpha-cos beta)/(1- cos alpha cos beta), then prove...

    Text Solution

    |

  20. If tan theta tan phi=sqrt((a-b)/(a+b)), prove that a-bcos 2theta)(a-...

    Text Solution

    |