Home
Class 12
MATHS
If cos theta=a/(b+c), cos phi= b/(a+c) a...

If `cos theta=a/(b+c), cos phi= b/(a+c)` and `cos psi=c/(a+b)` where `theta, phi, psi in (0, pi)` and `a,b,c` are sides of triangle `ABC` then `tan^2(theta/2)+tan^2(phi/2)+tan^2(psi/2)=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan^2\left(\frac{\theta}{2}\right) + \tan^2\left(\frac{\phi}{2}\right) + \tan^2\left(\frac{\psi}{2}\right) \) given the expressions for \( \cos \theta \), \( \cos \phi \), and \( \cos \psi \). ### Step-by-Step Solution: 1. **Write down the given expressions:** \[ \cos \theta = \frac{a}{b+c}, \quad \cos \phi = \frac{b}{a+c}, \quad \cos \psi = \frac{c}{a+b} \] 2. **Use the half-angle tangent formula:** The formula for cosine in terms of tangent of half-angle is: \[ \cos \theta = \frac{1 - \tan^2\left(\frac{\theta}{2}\right)}{1 + \tan^2\left(\frac{\theta}{2}\right)} \] Rearranging gives: \[ \frac{1 + \tan^2\left(\frac{\theta}{2}\right)}{1 - \tan^2\left(\frac{\theta}{2}\right)} = \frac{b+c}{a} \] 3. **Apply the component and dividendo method:** Using the component and dividendo method: \[ \tan^2\left(\frac{\theta}{2}\right) = \frac{b+c-a}{a+b+c} \] 4. **Repeat for \( \phi \) and \( \psi \):** Similarly, we can find: \[ \tan^2\left(\frac{\phi}{2}\right) = \frac{a+c-b}{a+b+c} \] \[ \tan^2\left(\frac{\psi}{2}\right) = \frac{a+b-c}{a+b+c} \] 5. **Sum the expressions:** Now, we can sum these three expressions: \[ \tan^2\left(\frac{\theta}{2}\right) + \tan^2\left(\frac{\phi}{2}\right) + \tan^2\left(\frac{\psi}{2}\right) = \frac{(b+c-a) + (a+c-b) + (a+b-c)}{a+b+c} \] 6. **Simplify the numerator:** Simplifying the numerator: \[ (b+c-a) + (a+c-b) + (a+b-c) = a + b + c \] 7. **Final expression:** Thus, we have: \[ \tan^2\left(\frac{\theta}{2}\right) + \tan^2\left(\frac{\phi}{2}\right) + \tan^2\left(\frac{\psi}{2}\right) = \frac{a+b+c}{a+b+c} = 1 \] ### Conclusion: The value of \( \tan^2\left(\frac{\theta}{2}\right) + \tan^2\left(\frac{\phi}{2}\right) + \tan^2\left(\frac{\psi}{2}\right) \) is \( 1 \).

To solve the problem, we need to find the value of \( \tan^2\left(\frac{\theta}{2}\right) + \tan^2\left(\frac{\phi}{2}\right) + \tan^2\left(\frac{\psi}{2}\right) \) given the expressions for \( \cos \theta \), \( \cos \phi \), and \( \cos \psi \). ### Step-by-Step Solution: 1. **Write down the given expressions:** \[ \cos \theta = \frac{a}{b+c}, \quad \cos \phi = \frac{b}{a+c}, \quad \cos \psi = \frac{c}{a+b} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.5|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.6|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.3|13 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If sintheta=1/2, cosphi=1/3 then theta+phi belongs to, where 0

If 3(cos 2phi-cos2theta)=1-cos2phi cos2theta , then tan theta= k tan phi , where theta, phiin (0,(pi)/(2)) , where k =

Show that in any triangle ABC, (a+b+c) (tan (A/2) + tan (B/2)) = 2c cot (C/2)

If sin theta and -cos theta are the roots of the equation ax^(2) - bx - c = 0 , where a, b, and c are the sides of a triangle ABC, then cos B is equal to

If sin 2theta+sin 2phi=1//2 and cos2theta+cos 2phi=3//2 , then cos^(2)(theta-phi)=

If tan theta = a/b , where 0lttheta lt pi/4 and bgtagt0 , find the value of sin 2theta, cos 2theta and tan 2theta.

If sin theta and - cos theta are the roots of the equation ax^2-bx-c=0 where a, b and c the side of a triangle ABC , then cos B is equal to :-

If tan theta=a/b then b cos 2theta+asin 2theta=

cos2thetacos2phi+sin^2(theta-phi)-sin^2(theta+phi)=

In Delta ABC if tan(A/2) tan(B/2) + tan(B/2) tan(C/2) = 2/3 then a+c

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Concept App. 3.4
  1. Prove that cos^(3)thetasin3theta+sin^(3)theta cos 3theta=(3)/(4)sin 4 ...

    Text Solution

    |

  2. (sin^2 3A)/(sin^2A)-(cos^2 3A)/(cos^2A)=

    Text Solution

    |

  3. Prove that (1+sec 2 theta)(1+sec 4 theta)(1+sec 8 theta)=(Tan 8theta)/...

    Text Solution

    |

  4. If in an isosceles triangle with base 'a', vertical angle 20^@ and lat...

    Text Solution

    |

  5. In DeltaABC, a = 3, b = 4 and c = 5, then value of sinA + sin2B + sin...

    Text Solution

    |

  6. If cosA=3/4, then 32 sin (A/2) sin ((5A) /2)= ------------- ...

    Text Solution

    |

  7. Find the value of (4cos^(2)9^(@)-1)(4cos^(2)27^(@)-1) (4cos^(2)81^(@...

    Text Solution

    |

  8. If theta is an acute angle and sin((theta)/(2))=sqrt((x-1)/(2x)) ,then...

    Text Solution

    |

  9. In a triangle ABC, if sin A sin(B-C)=sinC sin(A-B), then prove that co...

    Text Solution

    |

  10. Let a=(pi)/(7), then show that sin^(2)3a-sin^(2)a=sin2asin3a.

    Text Solution

    |

  11. Show that 1/(sin 10^@) - sqrt3/(cos 10^@) = 4

    Text Solution

    |

  12. Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + co...

    Text Solution

    |

  13. If tan x=(a)/(b) and tan 2x=(b)/(a+b) find the smallest positive value...

    Text Solution

    |

  14. tantheta+tan(6 0^0+theta)+tan(12 0^0+theta)=3tan3theta

    Text Solution

    |

  15. If A=110^(@), then prove that (1+sqrt(1+tan^(2)2A))/(tan2A)=-tan A.

    Text Solution

    |

  16. If alpha and beta are the two different roots of equations a cos theta...

    Text Solution

    |

  17. If tan beta=cos theta tan alpha, then prove that tan^(2)""(theta)/(2)=...

    Text Solution

    |

  18. If cos theta=a/(b+c), cos phi= b/(a+c) and cos psi=c/(a+b) where theta...

    Text Solution

    |

  19. If cos theta= (cos alpha-cos beta)/(1- cos alpha cos beta), then prove...

    Text Solution

    |

  20. If tan theta tan phi=sqrt((a-b)/(a+b)), prove that a-bcos 2theta)(a-...

    Text Solution

    |