Home
Class 12
MATHS
Find the value of (tan^(2)37(1)/(2)^(@)+...

Find the value of `(tan^(2)37(1)/(2)^(@)+1)/(tan^(2)37(1)/(2)^(@)-1)` .

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \[ \frac{\tan^2(37.5^\circ) + 1}{\tan^2(37.5^\circ) - 1} \] we can follow these steps: ### Step 1: Rewrite the Expression We start by rewriting the expression using the angle \( 37.5^\circ \): \[ \tan^2(37.5^\circ) = \tan^2\left(\frac{75^\circ}{2}\right) \] Thus, our expression becomes: \[ \frac{\tan^2\left(\frac{75^\circ}{2}\right) + 1}{\tan^2\left(\frac{75^\circ}{2}\right) - 1} \] ### Step 2: Use the Identity We know from trigonometric identities that: \[ \tan^2\theta + 1 = \sec^2\theta \quad \text{and} \quad \tan^2\theta - 1 = \sec^2\theta - 2 \] So we can rewrite the expression as: \[ \frac{\sec^2\left(\frac{75^\circ}{2}\right)}{\sec^2\left(\frac{75^\circ}{2}\right) - 2} \] ### Step 3: Simplify the Expression Now, we can simplify the expression: \[ \frac{\sec^2\left(\frac{75^\circ}{2}\right)}{\sec^2\left(\frac{75^\circ}{2}\right) - 2} = \frac{1}{1 - \frac{2}{\sec^2\left(\frac{75^\circ}{2}\right)}} \] ### Step 4: Substitute \( \sec^2 \) Using the identity \( \sec^2\theta = 1 + \tan^2\theta \): \[ \sec^2\left(\frac{75^\circ}{2}\right) = 1 + \tan^2\left(\frac{75^\circ}{2}\right) \] Thus, we can write: \[ \frac{1}{1 - \frac{2}{1 + \tan^2\left(\frac{75^\circ}{2}\right)}} \] ### Step 5: Rationalize the Denominator Now we can rationalize the denominator: \[ 1 - \frac{2}{1 + \tan^2\left(\frac{75^\circ}{2}\right)} = \frac{(1 + \tan^2\left(\frac{75^\circ}{2}\right)) - 2}{1 + \tan^2\left(\frac{75^\circ}{2}\right)} = \frac{\tan^2\left(\frac{75^\circ}{2}\right) - 1}{1 + \tan^2\left(\frac{75^\circ}{2}\right)} \] ### Step 6: Final Expression Thus, our expression simplifies to: \[ -\frac{1}{\cos(75^\circ)} \] ### Step 7: Evaluate \( \cos(75^\circ) \) Using the cosine addition formula: \[ \cos(75^\circ) = \cos(45^\circ + 30^\circ) = \cos(45^\circ)\cos(30^\circ) - \sin(45^\circ)\sin(30^\circ) \] Substituting known values: \[ \cos(75^\circ) = \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{\sqrt{3} - 1}{2\sqrt{2}} \] ### Step 8: Final Value Thus, the final value of the expression is: \[ -\frac{2\sqrt{2}}{\sqrt{3} - 1} \] After rationalizing, we get: \[ -\sqrt{2}(\sqrt{3} + 1) \] ### Conclusion The value of the expression is: \[ -\sqrt{2}(\sqrt{3} + 1) \] ---

To find the value of the expression \[ \frac{\tan^2(37.5^\circ) + 1}{\tan^2(37.5^\circ) - 1} \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.6|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.7|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.4|26 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Find the value of tan 22 ""(1)/(2) ""^(@)

Find the value of sin37(1/2)^(@).sin7 (1/2)^(@)

Find the value of tan^(-1)(tan'(2pi)/(3)) .

Find the value of (1-sin^(2)A)(1+tan^(2)A) .

Find the Value of tan 82 1/2^@

Write the value of tan(2tan^(-1)(1/5)) .

Find the value of: tan^(-1)[2cos(2sin^(-1)1/2)]

Find the value of: tan^(-1)(1)+cos^(-1)(-1/2)+sin^(-1)(-1/2)

Find the value of tan { cot ^(-1) ((-2)/3)}

Find the value of: tan^(-1)[2cos(2sin^(-1)(1/2)]