Home
Class 12
MATHS
Which of the following identieis, wherev...

Which of the following identieis, wherever defined, hold(s) good?

A

`cot alpha-tan alpha=2cot 2alpha`

B

`tan(45^(@)+alpha)-tan(45^(@)-alpha)=2co sec 2alpha`

C

`tan(45^(@)+alpha)+tan(45^(@)-alpha)=2sec2alpha`

D

`tan alpha+cot alpha=2 tan 2alpha`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of determining which of the given identities hold true, we will analyze each option step by step. ### Option A: Prove that \( \cot \alpha - \tan \alpha = 2 \cot 2\alpha \) 1. **Start with the Left-Hand Side (LHS)**: \[ \text{LHS} = \cot \alpha - \tan \alpha \] 2. **Rewrite in terms of sine and cosine**: \[ \cot \alpha = \frac{\cos \alpha}{\sin \alpha}, \quad \tan \alpha = \frac{\sin \alpha}{\cos \alpha} \] Therefore, \[ \text{LHS} = \frac{\cos \alpha}{\sin \alpha} - \frac{\sin \alpha}{\cos \alpha} \] 3. **Find a common denominator**: \[ \text{LHS} = \frac{\cos^2 \alpha - \sin^2 \alpha}{\sin \alpha \cos \alpha} \] 4. **Use the identity for cosine of double angle**: \[ \cos^2 \alpha - \sin^2 \alpha = \cos 2\alpha \] Thus, \[ \text{LHS} = \frac{\cos 2\alpha}{\sin \alpha \cos \alpha} \] 5. **Use the identity for sine of double angle**: \[ \sin 2\alpha = 2 \sin \alpha \cos \alpha \] Therefore, \[ \text{LHS} = \frac{\cos 2\alpha}{\frac{1}{2} \sin 2\alpha} = \frac{2 \cos 2\alpha}{\sin 2\alpha} = 2 \cot 2\alpha \] 6. **Conclusion**: \[ \text{LHS} = \text{RHS} \implies \cot \alpha - \tan \alpha = 2 \cot 2\alpha \quad \text{(True)} \] ### Option B: Prove that \( \tan(45^\circ + \alpha) - \tan(45^\circ - \alpha) = 2 \csc 2\alpha \) 1. **Start with the Left-Hand Side (LHS)**: \[ \text{LHS} = \tan(45^\circ + \alpha) - \tan(45^\circ - \alpha) \] 2. **Use the tangent addition formula**: \[ \tan(45^\circ + \alpha) = \frac{1 + \tan \alpha}{1 - \tan \alpha}, \quad \tan(45^\circ - \alpha) = \frac{1 - \tan \alpha}{1 + \tan \alpha} \] Therefore, \[ \text{LHS} = \frac{1 + \tan \alpha}{1 - \tan \alpha} - \frac{1 - \tan \alpha}{1 + \tan \alpha} \] 3. **Combine the fractions**: \[ \text{LHS} = \frac{(1 + \tan \alpha)^2 - (1 - \tan \alpha)^2}{(1 - \tan \alpha)(1 + \tan \alpha)} \] 4. **Simplify the numerator**: \[ (1 + \tan \alpha)^2 - (1 - \tan \alpha)^2 = 4 \tan \alpha \] Thus, \[ \text{LHS} = \frac{4 \tan \alpha}{1 - \tan^2 \alpha} \] 5. **Use the identity for tangent of double angle**: \[ \tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha} \] Therefore, \[ \text{LHS} = 2 \tan 2\alpha \] 6. **Conclusion**: \[ \text{LHS} \neq 2 \csc 2\alpha \quad \text{(False)} \] ### Option C: Prove that \( \tan(45^\circ + \alpha) + \tan(45^\circ - \alpha) = 2 \csc 2\alpha \) 1. **Start with the Left-Hand Side (LHS)**: \[ \text{LHS} = \tan(45^\circ + \alpha) + \tan(45^\circ - \alpha) \] 2. **Use the tangent addition formula**: \[ \text{LHS} = \frac{1 + \tan \alpha}{1 - \tan \alpha} + \frac{1 - \tan \alpha}{1 + \tan \alpha} \] 3. **Combine the fractions**: \[ \text{LHS} = \frac{(1 + \tan \alpha)^2 + (1 - \tan \alpha)^2}{(1 - \tan \alpha)(1 + \tan \alpha)} \] 4. **Simplify the numerator**: \[ (1 + \tan \alpha)^2 + (1 - \tan \alpha)^2 = 2 + 2 \tan^2 \alpha \] Thus, \[ \text{LHS} = \frac{2(1 + \tan^2 \alpha)}{1 - \tan^2 \alpha} \] 5. **Use the identity for cosecant**: \[ 1 + \tan^2 \alpha = \sec^2 \alpha \quad \text{and} \quad \sec^2 \alpha = \frac{1}{\cos^2 \alpha} \] Therefore, \[ \text{LHS} = \frac{2 \sec^2 \alpha}{1 - \tan^2 \alpha} \] 6. **Use the identity for sine of double angle**: \[ \text{LHS} = 2 \csc 2\alpha \quad \text{(True)} \] ### Option D: Prove that \( \tan \alpha + \cot \alpha = 2 \tan 2\alpha \) 1. **Start with the Left-Hand Side (LHS)**: \[ \text{LHS} = \tan \alpha + \cot \alpha \] 2. **Rewrite in terms of sine and cosine**: \[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha}, \quad \cot \alpha = \frac{\cos \alpha}{\sin \alpha} \] Therefore, \[ \text{LHS} = \frac{\sin^2 \alpha + \cos^2 \alpha}{\sin \alpha \cos \alpha} \] 3. **Use the Pythagorean identity**: \[ \sin^2 \alpha + \cos^2 \alpha = 1 \] Thus, \[ \text{LHS} = \frac{1}{\sin \alpha \cos \alpha} \] 4. **Use the identity for sine of double angle**: \[ \sin 2\alpha = 2 \sin \alpha \cos \alpha \] Therefore, \[ \text{LHS} = \frac{2}{\sin 2\alpha} \] 5. **Conclusion**: \[ \text{LHS} \neq 2 \tan 2\alpha \quad \text{(False)} \] ### Summary of Results: - **Option A**: True - **Option B**: False - **Option C**: True - **Option D**: False ### Final Answer: The identities that hold true are **Option A** and **Option C**.

To solve the problem of determining which of the given identities hold true, we will analyze each option step by step. ### Option A: Prove that \( \cot \alpha - \tan \alpha = 2 \cot 2\alpha \) 1. **Start with the Left-Hand Side (LHS)**: \[ \text{LHS} = \cot \alpha - \tan \alpha \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Numerical Value Type )|38 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Single Correct Answer Type)|100 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Which of the following identities, wherever defined, hold(s) good? (a)cotalpha-tanalpha=2cot2alpha (b)tan(45^0+alpha)-tan(45^0-alpha)=2cos e c2alpha (c)tan(45^0+alpha)+tan(45^0-alpha)=2sec2alpha (d)tanalpha+cotalpha=2tan2alpha

Let m=t a n3\ a n d\ n=s e c6,\ then which of the following statement(s) does/do not hold goods? (a). m\ &\ n\ both are positive (b). m\ &\ n both are negative (c). m is positive and n is negative (d). m is negative and n is positive

Which one of the following inequality holds good:

Which of the following options does not hold good regarding anaerobic respiration or fermentation ?

Let alpha = 3 cos^(-1) (5/sqrt28) + 3 tan^(-1) ( sqrt3/2) " and " beta = 4 sin ^(-1) ((7sqrt2)/10) - 4 tan^(-1) (3/4) , then which of the following does not hold (s) good ?

Which of the following Proteins helps in holding DNA together in eukaryotes ?

In which of the following intervals the inequality, sinx < cos x < tanx < cot x can hold good ?

If f(x) = sin^(-1) x. cos^(-1) x. tan^(-1) x . cot^(-1) x. sec^(-1) x. cosec^(-1) x , then which of the following statement (s) hold(s) good?

Which of the following convert a primary hydroxyl group into good leaving group for a S_(N)2 reaction ?

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Multiple Correct Answer Type)
  1. Which of the following quantities are rational? (a)sin((11pi)/(12))sin...

    Text Solution

    |

  2. In which of the following sets the inequality sin^6x+cos^6x >5/8 holds...

    Text Solution

    |

  3. Let f(x)=x^2-2sqrt((sinsqrt(3)-sinsqrt(2)))x-(cossqrt(3)-cossqrt(2)) t...

    Text Solution

    |

  4. For alpha=pi/7 which of the following hold (s) good?

    Text Solution

    |

  5. Which of the following identieis, wherever defined, hold(s) good?

    Text Solution

    |

  6. The expression (tan^4x+2tan^2x+1)cos^2x ,w h e nx=pi/(12), can be equa...

    Text Solution

    |

  7. Let alpha,betaa n dgamma be some angles in the first quadrant satisfyi...

    Text Solution

    |

  8. Let fn(theta)=(cos theta/2+cos 2theta + cos (7theta)/2+...+cos (3n-2) ...

    Text Solution

    |

  9. If sin(x+20^0)=2sinxcos40^0,w h r ex in (0,pi/2), then which of the fo...

    Text Solution

    |

  10. The expression cos^2(alpha+beta)+cos^2(alpha-beta)-cos2alphacos2beta i...

    Text Solution

    |

  11. If cot^(3)alpha+cot^(2)alpha+cot alpha=1 then which of the following...

    Text Solution

    |

  12. If p=sin(A-B)sin(C-D),q=sin(B-C)sin(A-D),r=sin(C-A)sin(B-D) then p+q-r...

    Text Solution

    |

  13. If cosx-sinalphacotbetasinx=cosa , then the value of tan(x/2) is -tan(...

    Text Solution

    |

  14. Let f(x)=ab sin x+bsqrt(1-a^(2))cosx+c, where |a|lt1,bgt0 then

    Text Solution

    |

  15. Let P(k)=(1+cospi/(4k)) (1+cos((2k-1)pi)/(4k)) (1+cos((2k+1)pi)/(4k))...

    Text Solution

    |

  16. If 3sinbeta=sin(2alpha+beta) then tan(alpha+beta)-2tanalpha is indepen...

    Text Solution

    |

  17. x=sqrt(a^2cos^2alpha+b^2sin^2alpha)+sqrt(a^2sin^2alpha+b^2cos^2alpha) ...

    Text Solution

    |

  18. If (x-a)costheta+ysintheta=(x-a)cosvarphi+ysintheta=aa n dtan(theta/2)...

    Text Solution

    |

  19. If cos (x-y),, cosx and cos(x+y) are in H.P., are in H.P., then cosx*s...

    Text Solution

    |

  20. Difference between maximum and minimum values of (60sin alpha+p cos al...

    Text Solution

    |