Home
Class 12
MATHS
Let f(x)=ab sin x+bsqrt(1-a^(2))cosx+c, ...

Let `f(x)=ab sin x+bsqrt(1-a^(2))cosx+c`, where `|a|lt1,bgt0` then

A

maximum value of `f(x)=-cos^(-1)a`

B

`f(x)=c` if `x=cos^(-1)alpha`

C

`f(x)=c` if `x=-cos^(-1)alpha`

D

`f(x)=c` if `x=cos^(-1)alpha`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the function given and derive the necessary expressions to find the maximum and minimum values of \( f(x) \). ### Step 1: Write down the function The function is given as: \[ f(x) = ab \sin x + b \sqrt{1 - a^2} \cos x + c \] ### Step 2: Factor out \( b \) We can factor \( b \) from the first two terms: \[ f(x) = b \left( a \sin x + \sqrt{1 - a^2} \cos x \right) + c \] ### Step 3: Rewrite the sine and cosine terms We can express \( a \sin x + \sqrt{1 - a^2} \cos x \) in the form of \( R \sin(x + \alpha) \) where: \[ R = \sqrt{a^2 + (1 - a^2)} = 1 \] and \[ \tan \alpha = \frac{\sqrt{1 - a^2}}{a} \] Thus, we rewrite: \[ f(x) = b \sin(x + \alpha) + c \] ### Step 4: Determine the maximum and minimum values of \( f(x) \) The maximum value of \( \sin(x + \alpha) \) is 1 and the minimum value is -1. Therefore: - Maximum of \( f(x) \): \[ f_{\text{max}} = b \cdot 1 + c = b + c \] - Minimum of \( f(x) \): \[ f_{\text{min}} = b \cdot (-1) + c = -b + c \] ### Step 5: Calculate the difference between the maximum and minimum values Now, we find the difference: \[ f_{\text{max}} - f_{\text{min}} = (b + c) - (-b + c) = b + c + b - c = 2b \] ### Step 6: Conclusion Thus, the difference between the maximum and minimum values of \( f(x) \) is \( 2b \).

To solve the problem step by step, we will analyze the function given and derive the necessary expressions to find the maximum and minimum values of \( f(x) \). ### Step 1: Write down the function The function is given as: \[ f(x) = ab \sin x + b \sqrt{1 - a^2} \cos x + c \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Numerical Value Type )|38 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Single Correct Answer Type)|100 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=a bsinx+bsqrt(1-a^2)cosx+c , where |a| >0 then (a) maximum value of f(x) is b if c=0 (b) difference of maximum and minimum values of f(x) is 2b (c) f(x)=c if x= -cos^(-1)a (d) f(x)=c if x= cos^(-1)a

Consider the function f(x)=((ax+1)/(bx+2))^(x) , where a,bgt0 , the lim_(xtooo)f(x) is

Let f(x)=a sin x+c , where a and c are real numbers and a>0. Then f(x)lt0, AA x in R if

Let f(x)=[cosx+ sin x], 0 lt x lt 2pi , where [x] denotes the greatest integer less than or equal to x. The number of points of discontinuity of f(x) is

Let f(x)={(tan^(-1)x, , |x|ge1),((x^(2)-1)/4, , |x|lt1):} then domain of f'(x) is

Let f(x)=ax^(2)+bx + c , where a in R^(+) and b^(2)-4ac lt 0 . Area bounded by y = f(x) , x-axis and the lines x = 0, x = 1, is equal to :

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

Let f(x) = a x^2 + bx + c , where a, b, c in R, a!=0 . Suppose |f(x)| leq1, x in [0,1] , then

Find the intervals in which f(x)=sinx-cosx , where 0 lt x lt 2pi is increasing or decreasing.

Let f(x)=m ax{2 sin x,1-cosx},x epsilon (0,pi) . Then set of points of non differentiability is

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Multiple Correct Answer Type)
  1. Which of the following quantities are rational? (a)sin((11pi)/(12))sin...

    Text Solution

    |

  2. In which of the following sets the inequality sin^6x+cos^6x >5/8 holds...

    Text Solution

    |

  3. Let f(x)=x^2-2sqrt((sinsqrt(3)-sinsqrt(2)))x-(cossqrt(3)-cossqrt(2)) t...

    Text Solution

    |

  4. For alpha=pi/7 which of the following hold (s) good?

    Text Solution

    |

  5. Which of the following identieis, wherever defined, hold(s) good?

    Text Solution

    |

  6. The expression (tan^4x+2tan^2x+1)cos^2x ,w h e nx=pi/(12), can be equa...

    Text Solution

    |

  7. Let alpha,betaa n dgamma be some angles in the first quadrant satisfyi...

    Text Solution

    |

  8. Let fn(theta)=(cos theta/2+cos 2theta + cos (7theta)/2+...+cos (3n-2) ...

    Text Solution

    |

  9. If sin(x+20^0)=2sinxcos40^0,w h r ex in (0,pi/2), then which of the fo...

    Text Solution

    |

  10. The expression cos^2(alpha+beta)+cos^2(alpha-beta)-cos2alphacos2beta i...

    Text Solution

    |

  11. If cot^(3)alpha+cot^(2)alpha+cot alpha=1 then which of the following...

    Text Solution

    |

  12. If p=sin(A-B)sin(C-D),q=sin(B-C)sin(A-D),r=sin(C-A)sin(B-D) then p+q-r...

    Text Solution

    |

  13. If cosx-sinalphacotbetasinx=cosa , then the value of tan(x/2) is -tan(...

    Text Solution

    |

  14. Let f(x)=ab sin x+bsqrt(1-a^(2))cosx+c, where |a|lt1,bgt0 then

    Text Solution

    |

  15. Let P(k)=(1+cospi/(4k)) (1+cos((2k-1)pi)/(4k)) (1+cos((2k+1)pi)/(4k))...

    Text Solution

    |

  16. If 3sinbeta=sin(2alpha+beta) then tan(alpha+beta)-2tanalpha is indepen...

    Text Solution

    |

  17. x=sqrt(a^2cos^2alpha+b^2sin^2alpha)+sqrt(a^2sin^2alpha+b^2cos^2alpha) ...

    Text Solution

    |

  18. If (x-a)costheta+ysintheta=(x-a)cosvarphi+ysintheta=aa n dtan(theta/2)...

    Text Solution

    |

  19. If cos (x-y),, cosx and cos(x+y) are in H.P., are in H.P., then cosx*s...

    Text Solution

    |

  20. Difference between maximum and minimum values of (60sin alpha+p cos al...

    Text Solution

    |