Home
Class 12
MATHS
Let P(k)=(1+cospi/(4k)) (1+cos((2k-1)pi)...

Let `P(k)=(1+cospi/(4k))` `(1+cos((2k-1)pi)/(4k))` `(1+cos((2k+1)pi)/(4k))(1+cos((4k-1)pi)/(4k))dotT h e n` `P(3)=1/(16)` (b) `P(4)=(2-sqrt(2))/(16)` `P(5)=(3-sqrt(5))/(32)` (d) `P(6)(2-sqrt(3))/(16)`

A

`P(3)=(1)/(16)`

B

`P(4)=(2-sqrt(2))/(16)`

C

`P(5)=(3-sqrt(5))/(32)`

D

`P(6)=(2-sqrt(3))/(16)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the expression for \( P(k) \) and evaluate it for the given values of \( k \). ### Step 1: Write down the expression for \( P(k) \) The expression for \( P(k) \) is given as: \[ P(k) = (1 + \cos(\frac{\pi}{4k})) \cdot (1 + \cos(\frac{(2k-1)\pi}{4k})) \cdot (1 + \cos(\frac{(2k+1)\pi}{4k})) \cdot (1 + \cos(\frac{(4k-1)\pi}{4k})) \] ### Step 2: Simplify the cosine terms Using the cosine angle subtraction and addition identities: - \( \cos(\frac{\pi}{2} - x) = \sin(x) \) - \( \cos(\frac{\pi}{2} + x) = -\sin(x) \) - \( \cos(\pi - x) = -\cos(x) \) We can rewrite the cosine terms: - \( \cos(\frac{(2k-1)\pi}{4k}) = \cos(\frac{\pi}{2} - \frac{\pi}{4k}) = \sin(\frac{\pi}{4k}) \) - \( \cos(\frac{(2k+1)\pi}{4k}) = \cos(\frac{\pi}{2} + \frac{\pi}{4k}) = -\sin(\frac{\pi}{4k}) \) - \( \cos(\frac{(4k-1)\pi}{4k}) = \cos(\pi - \frac{\pi}{4k}) = -\cos(\frac{\pi}{4k}) \) Thus, we can rewrite \( P(k) \) as: \[ P(k) = (1 + \cos(\frac{\pi}{4k})) \cdot (1 + \sin(\frac{\pi}{4k})) \cdot (1 - \sin(\frac{\pi}{4k})) \cdot (1 - \cos(\frac{\pi}{4k})) \] ### Step 3: Use the identity \( a^2 - b^2 = (a-b)(a+b) \) We can simplify the product: \[ (1 + \sin(\frac{\pi}{4k}))(1 - \sin(\frac{\pi}{4k})) = 1 - \sin^2(\frac{\pi}{4k}) = \cos^2(\frac{\pi}{4k}) \] \[ (1 + \cos(\frac{\pi}{4k}))(1 - \cos(\frac{\pi}{4k})) = 1 - \cos^2(\frac{\pi}{4k}) = \sin^2(\frac{\pi}{4k}) \] Thus, we have: \[ P(k) = \cos^2(\frac{\pi}{4k}) \cdot \sin^2(\frac{\pi}{4k}) \] ### Step 4: Rewrite using double angle identity Using the double angle identity \( \sin(2x) = 2 \sin(x) \cos(x) \): \[ P(k) = \frac{1}{4} \sin^2(\frac{\pi}{2k}) \] ### Step 5: Evaluate \( P(k) \) for specific values of \( k \) Now we will evaluate \( P(k) \) for \( k = 3, 4, 5, 6 \). 1. **For \( k = 3 \)**: \[ P(3) = \frac{1}{4} \sin^2(\frac{\pi}{6}) = \frac{1}{4} \left(\frac{1}{2}\right)^2 = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16} \] 2. **For \( k = 4 \)**: \[ P(4) = \frac{1}{4} \sin^2(\frac{\pi}{8}) = \frac{1}{4} \cdot \left(\frac{\sqrt{2 - \sqrt{2}}}{2}\right)^2 = \frac{1}{4} \cdot \frac{2 - \sqrt{2}}{4} = \frac{2 - \sqrt{2}}{16} \] 3. **For \( k = 5 \)**: \[ P(5) = \frac{1}{4} \sin^2(\frac{\pi}{10}) = \frac{1}{4} \cdot \left(\frac{\sqrt{5} - 1}{4}\right)^2 = \frac{1}{4} \cdot \frac{(5 - 2\sqrt{5} + 1)}{16} = \frac{6 - 2\sqrt{5}}{64} = \frac{3 - \sqrt{5}}{32} \] 4. **For \( k = 6 \)**: \[ P(6) = \frac{1}{4} \sin^2(\frac{\pi}{12}) = \frac{1}{4} \cdot \left(\frac{\sqrt{6} - \sqrt{2}}{4}\right)^2 = \frac{1}{4} \cdot \frac{(6 - 2\sqrt{12})}{16} = \frac{2 - \sqrt{3}}{16} \] ### Final Results: - \( P(3) = \frac{1}{16} \) - \( P(4) = \frac{2 - \sqrt{2}}{16} \) - \( P(5) = \frac{3 - \sqrt{5}}{32} \) - \( P(6) = \frac{2 - \sqrt{3}}{16} \)

To solve the problem step by step, we will analyze the expression for \( P(k) \) and evaluate it for the given values of \( k \). ### Step 1: Write down the expression for \( P(k) \) The expression for \( P(k) \) is given as: \[ P(k) = (1 + \cos(\frac{\pi}{4k})) \cdot (1 + \cos(\frac{(2k-1)\pi}{4k})) \cdot (1 + \cos(\frac{(2k+1)\pi}{4k})) \cdot (1 + \cos(\frac{(4k-1)\pi}{4k})) \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Numerical Value Type )|38 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Single Correct Answer Type)|100 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Let P(k)=(1+cos(pi/(4k))) (1+cos(((2k-1)pi)/(4k))) (1+cos(((2k+1)pi)/(4k)))(1+cos(((4k-1)pi)/(4k)))dot Then Prove that (a) P(3)=1/(16) (b) P(4)=(2-sqrt(2))/(16) (c) P(5)=(3-sqrt(5))/(32) (d) P(6)(2-sqrt(3))/(16)

Let F(x)=(1+sin(pi/(2k))(1+sin(k-1)pi/(2k))(1+sin(2k+1)pi/(2k))(1+sin(3k-1)pi/(2k)) . The value of F(1)+F(2)+F(3) is equal to

prod_(k=0)^3 (1+cos\ ((2k+1)pi)/8)=

The value of 1+sum_(k=0)^(14) {cos((2k+1)pi)/(15) - isin((2k+1)pi)/(15)} , is

The value of sum_(k=1)^(3) cos^(2)(2k-1)(pi)/(12), is

The value of sum_(k=1)^(13) (1)/(sin((pi)/(4) + ((k-1)pi)/(6)) sin ((pi)/(4)+ (kpi)/(6))) is equal to

lim_(n->oo)sum_(k=1)^n((sin)pi/(2k)-(cos)pi/(2k)-(sin)(pi/(2(k+2))+(cos)pi/(2(k+2)))=

If (k+(1)/(k))^(2)=16 , then k^(2)+(1)/(k^(2))=

tan^(-1)((1)/(1+2))+tan^(-1)((1)/(1+6))+tan^(-1)(k)=tan^(-1)4 -(pi)/(4) then k is

cos^(-1)("cos"(2cot^(-1)(sqrt(2)-1))) is equal to sqrt(2)-1 (b) pi/4 (c) (3pi)/4 (d) non eoft h e s e

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Multiple Correct Answer Type)
  1. Which of the following quantities are rational? (a)sin((11pi)/(12))sin...

    Text Solution

    |

  2. In which of the following sets the inequality sin^6x+cos^6x >5/8 holds...

    Text Solution

    |

  3. Let f(x)=x^2-2sqrt((sinsqrt(3)-sinsqrt(2)))x-(cossqrt(3)-cossqrt(2)) t...

    Text Solution

    |

  4. For alpha=pi/7 which of the following hold (s) good?

    Text Solution

    |

  5. Which of the following identieis, wherever defined, hold(s) good?

    Text Solution

    |

  6. The expression (tan^4x+2tan^2x+1)cos^2x ,w h e nx=pi/(12), can be equa...

    Text Solution

    |

  7. Let alpha,betaa n dgamma be some angles in the first quadrant satisfyi...

    Text Solution

    |

  8. Let fn(theta)=(cos theta/2+cos 2theta + cos (7theta)/2+...+cos (3n-2) ...

    Text Solution

    |

  9. If sin(x+20^0)=2sinxcos40^0,w h r ex in (0,pi/2), then which of the fo...

    Text Solution

    |

  10. The expression cos^2(alpha+beta)+cos^2(alpha-beta)-cos2alphacos2beta i...

    Text Solution

    |

  11. If cot^(3)alpha+cot^(2)alpha+cot alpha=1 then which of the following...

    Text Solution

    |

  12. If p=sin(A-B)sin(C-D),q=sin(B-C)sin(A-D),r=sin(C-A)sin(B-D) then p+q-r...

    Text Solution

    |

  13. If cosx-sinalphacotbetasinx=cosa , then the value of tan(x/2) is -tan(...

    Text Solution

    |

  14. Let f(x)=ab sin x+bsqrt(1-a^(2))cosx+c, where |a|lt1,bgt0 then

    Text Solution

    |

  15. Let P(k)=(1+cospi/(4k)) (1+cos((2k-1)pi)/(4k)) (1+cos((2k+1)pi)/(4k))...

    Text Solution

    |

  16. If 3sinbeta=sin(2alpha+beta) then tan(alpha+beta)-2tanalpha is indepen...

    Text Solution

    |

  17. x=sqrt(a^2cos^2alpha+b^2sin^2alpha)+sqrt(a^2sin^2alpha+b^2cos^2alpha) ...

    Text Solution

    |

  18. If (x-a)costheta+ysintheta=(x-a)cosvarphi+ysintheta=aa n dtan(theta/2)...

    Text Solution

    |

  19. If cos (x-y),, cosx and cos(x+y) are in H.P., are in H.P., then cosx*s...

    Text Solution

    |

  20. Difference between maximum and minimum values of (60sin alpha+p cos al...

    Text Solution

    |