Home
Class 12
MATHS
x=sqrt(a^2cos^2alpha+b^2sin^2alpha)+sqrt...

`x=sqrt(a^2cos^2alpha+b^2sin^2alpha)+sqrt(a^2sin^2alpha+b^2cos^2alpha)` then `x^2=a^2+b^2+2sqrt(p(a^2+b^2)-p^2),` where p can be is equal to

A

`alpha^(2)cos^(2)alpha+b^(2)sin^(2)alpha`

B

`alpha^(2)sin^(2)alpha+b^(2) cos^(2)alpha`

C

`(1)/(2) [alpha^(2)+b^(2)+(alpha^(2)-b^(2))cos2alpha[`

D

`(1)/(2)[a^(2)+b^(2)-(a^(2)-b^(2))cos2alpha]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the expression given for \( x \): \[ x = \sqrt{a^2 \cos^2 \alpha + b^2 \sin^2 \alpha} + \sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha} \] ### Step 1: Square the expression for \( x \) We will square both sides to find \( x^2 \): \[ x^2 = \left( \sqrt{a^2 \cos^2 \alpha + b^2 \sin^2 \alpha} + \sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha} \right)^2 \] Using the identity \( (A + B)^2 = A^2 + B^2 + 2AB \), we can expand this: \[ x^2 = \left( a^2 \cos^2 \alpha + b^2 \sin^2 \alpha \right) + \left( a^2 \sin^2 \alpha + b^2 \cos^2 \alpha \right) + 2 \sqrt{(a^2 \cos^2 \alpha + b^2 \sin^2 \alpha)(a^2 \sin^2 \alpha + b^2 \cos^2 \alpha)} \] ### Step 2: Simplify the expression Now, we can simplify the first two terms: \[ x^2 = a^2 (\cos^2 \alpha + \sin^2 \alpha) + b^2 (\sin^2 \alpha + \cos^2 \alpha) \] Using the Pythagorean identity \( \cos^2 \alpha + \sin^2 \alpha = 1 \): \[ x^2 = a^2 + b^2 + 2 \sqrt{(a^2 \cos^2 \alpha + b^2 \sin^2 \alpha)(a^2 \sin^2 \alpha + b^2 \cos^2 \alpha)} \] ### Step 3: Define \( p \) Let \( p = a^2 \cos^2 \alpha + b^2 \sin^2 \alpha \). Then we can express the square root term as: \[ \sqrt{(a^2 \cos^2 \alpha + b^2 \sin^2 \alpha)(a^2 \sin^2 \alpha + b^2 \cos^2 \alpha)} = \sqrt{p(a^2 + b^2) - p^2} \] ### Step 4: Substitute back into the equation for \( x^2 \) Now we can substitute this back into our expression for \( x^2 \): \[ x^2 = a^2 + b^2 + 2\sqrt{p(a^2 + b^2) - p^2} \] ### Conclusion Thus, we have shown that: \[ x^2 = a^2 + b^2 + 2\sqrt{p(a^2 + b^2) - p^2} \] where \( p = a^2 \cos^2 \alpha + b^2 \sin^2 \alpha \).

To solve the problem, we start with the expression given for \( x \): \[ x = \sqrt{a^2 \cos^2 \alpha + b^2 \sin^2 \alpha} + \sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha} \] ### Step 1: Square the expression for \( x \) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Numerical Value Type )|38 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Single Correct Answer Type)|100 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

lf cos^2 alpha -sin^2 alpha = tan^2 beta , then show that tan^2 alpha = cos^2 beta-sin^2 beta .

Which is equivalent to (sin^2 alpha + cos^2 alpha )/(cos alpha ) ?

Prove that : cos^2alpha+cos^2(alpha+beta)-2cosalphacosbetacos(alpha+beta)=sin^2beta

Show that cos ^2 alpha + cos^2 (alpha +Beta) - 2 cos alpha cos betacos (alpha+ beta) =sin^2 beta

If cos^2alpha-sin^2alpha=tan^2beta," then prove that "tan^2alpha=cos^2beta-sin^2beta .

The value of f(alpha)=sqrt(cos e c^2alpha-2cotalpha)+sqrt(cos e c^2alpha+2cotalpha) can be 2cotalpha (b) -2cotalpha (c) 2 (d) -2

If (sqrt(2)cos alpha)/sqrt(1-cos2 alpha)=1/7 and sqrt((1+cos 2 beta)/2)=1/sqrt10,alpha,beta in (pi/2,pi) , then tan (2 alpha - beta) is equal to ........

If Delta_(1) is the area of the triangle with vertices (0, 0), (a tan alpha, b cot alpha), (a sin alpha, b cos alpha), Delta_(2) is the area of the triangle with vertices (a sec^(2) alpha, b cos ec^(2) alpha), (a + a sin^(2)alpha, b + b cos^(2)alpha) and Delta_(3) is the area of the triangle with vertices (0,0), (a tan alpha, -b cot alpha), (a sin alpha, b cos alpha) . Show that there is no value of alpha for which Delta_(1), Delta_(2) and Delta_(3) are in GP.

Let (sqrt(2)sin alpha)/sqrt(1+cos 2alpha)=1/7 and sqrt((1-cos2 beta)/2)=1/sqrt(10) where alpha,beta in (0,pi/2) . Then tan(alpha+2beta) is equal to

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Multiple Correct Answer Type)
  1. Which of the following quantities are rational? (a)sin((11pi)/(12))sin...

    Text Solution

    |

  2. In which of the following sets the inequality sin^6x+cos^6x >5/8 holds...

    Text Solution

    |

  3. Let f(x)=x^2-2sqrt((sinsqrt(3)-sinsqrt(2)))x-(cossqrt(3)-cossqrt(2)) t...

    Text Solution

    |

  4. For alpha=pi/7 which of the following hold (s) good?

    Text Solution

    |

  5. Which of the following identieis, wherever defined, hold(s) good?

    Text Solution

    |

  6. The expression (tan^4x+2tan^2x+1)cos^2x ,w h e nx=pi/(12), can be equa...

    Text Solution

    |

  7. Let alpha,betaa n dgamma be some angles in the first quadrant satisfyi...

    Text Solution

    |

  8. Let fn(theta)=(cos theta/2+cos 2theta + cos (7theta)/2+...+cos (3n-2) ...

    Text Solution

    |

  9. If sin(x+20^0)=2sinxcos40^0,w h r ex in (0,pi/2), then which of the fo...

    Text Solution

    |

  10. The expression cos^2(alpha+beta)+cos^2(alpha-beta)-cos2alphacos2beta i...

    Text Solution

    |

  11. If cot^(3)alpha+cot^(2)alpha+cot alpha=1 then which of the following...

    Text Solution

    |

  12. If p=sin(A-B)sin(C-D),q=sin(B-C)sin(A-D),r=sin(C-A)sin(B-D) then p+q-r...

    Text Solution

    |

  13. If cosx-sinalphacotbetasinx=cosa , then the value of tan(x/2) is -tan(...

    Text Solution

    |

  14. Let f(x)=ab sin x+bsqrt(1-a^(2))cosx+c, where |a|lt1,bgt0 then

    Text Solution

    |

  15. Let P(k)=(1+cospi/(4k)) (1+cos((2k-1)pi)/(4k)) (1+cos((2k+1)pi)/(4k))...

    Text Solution

    |

  16. If 3sinbeta=sin(2alpha+beta) then tan(alpha+beta)-2tanalpha is indepen...

    Text Solution

    |

  17. x=sqrt(a^2cos^2alpha+b^2sin^2alpha)+sqrt(a^2sin^2alpha+b^2cos^2alpha) ...

    Text Solution

    |

  18. If (x-a)costheta+ysintheta=(x-a)cosvarphi+ysintheta=aa n dtan(theta/2)...

    Text Solution

    |

  19. If cos (x-y),, cosx and cos(x+y) are in H.P., are in H.P., then cosx*s...

    Text Solution

    |

  20. Difference between maximum and minimum values of (60sin alpha+p cos al...

    Text Solution

    |