Home
Class 12
MATHS
If alpha, beta,gamma,delta are the solut...

If `alpha, beta,gamma,delta` are the solutions of the equation `tan (theta+(pi)/(4))=3tan 3theta`, no two of which have equal tangents.
The value of `(1)/(tan alpha)+(1)/(tan beta)+(1)/(tan gamma)+(1)/(tan delta)` is

A

`-8`

B

`8`

C

`2//3`

D

`1//3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{\tan \alpha} + \frac{1}{\tan \beta} + \frac{1}{\tan \gamma} + \frac{1}{\tan \delta} \) given that \( \alpha, \beta, \gamma, \delta \) are the solutions of the equation \( \tan \left( \theta + \frac{\pi}{4} \right) = 3 \tan(3\theta) \). ### Step-by-Step Solution: 1. **Rewrite the Equation**: We start with the equation: \[ \tan \left( \theta + \frac{\pi}{4} \right) = 3 \tan(3\theta) \] Using the tangent addition formula, we have: \[ \tan \left( \theta + \frac{\pi}{4} \right) = \frac{\tan \theta + \tan \frac{\pi}{4}}{1 - \tan \theta \tan \frac{\pi}{4}} = \frac{\tan \theta + 1}{1 - \tan \theta} \] 2. **Express \( \tan(3\theta) \)**: The tangent of triple angle can be expressed as: \[ \tan(3\theta) = \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta} \] Let \( t = \tan \theta \). Then we can rewrite the equation as: \[ \frac{t + 1}{1 - t} = 3 \cdot \frac{3t - t^3}{1 - 3t^2} \] 3. **Cross Multiply**: Cross multiplying gives: \[ (t + 1)(1 - 3t^2) = 3(3t - t^3)(1 - t) \] Expanding both sides: \[ t + 1 - 3t^3 - 3t^2 = 9t - 9t^2 - 3t^3 + 3t^4 \] 4. **Rearranging the Equation**: Rearranging terms leads to: \[ 3t^4 - 6t^2 + 8t - 1 = 0 \] 5. **Finding the Roots**: The polynomial \( 3t^4 - 6t^2 + 8t - 1 = 0 \) has roots \( t_1, t_2, t_3, t_4 \) corresponding to \( \tan \alpha, \tan \beta, \tan \gamma, \tan \delta \). 6. **Using Vieta's Formulas**: From Vieta's formulas, we can find: - The sum of the roots \( t_1 + t_2 + t_3 + t_4 = 0 \) - The sum of the product of the roots taken two at a time \( t_1 t_2 + t_1 t_3 + t_1 t_4 + t_2 t_3 + t_2 t_4 + t_3 t_4 = -2 \) - The sum of the product of the roots taken three at a time \( t_1 t_2 t_3 + t_1 t_2 t_4 + t_1 t_3 t_4 + t_2 t_3 t_4 = \frac{8}{3} \) - The product of the roots \( t_1 t_2 t_3 t_4 = \frac{1}{3} \) 7. **Finding the Required Value**: The expression we need to find is: \[ \frac{1}{t_1} + \frac{1}{t_2} + \frac{1}{t_3} + \frac{1}{t_4} = \frac{t_2 t_3 t_4 + t_1 t_3 t_4 + t_1 t_2 t_4 + t_1 t_2 t_3}{t_1 t_2 t_3 t_4} \] Substituting the values from Vieta's: \[ = \frac{\frac{8}{3}}{\frac{1}{3}} = 8 \] ### Final Answer: The value of \( \frac{1}{\tan \alpha} + \frac{1}{\tan \beta} + \frac{1}{\tan \gamma} + \frac{1}{\tan \delta} \) is \( 8 \).

To solve the problem, we need to find the value of \( \frac{1}{\tan \alpha} + \frac{1}{\tan \beta} + \frac{1}{\tan \gamma} + \frac{1}{\tan \delta} \) given that \( \alpha, \beta, \gamma, \delta \) are the solutions of the equation \( \tan \left( \theta + \frac{\pi}{4} \right) = 3 \tan(3\theta) \). ### Step-by-Step Solution: 1. **Rewrite the Equation**: We start with the equation: \[ \tan \left( \theta + \frac{\pi}{4} \right) = 3 \tan(3\theta) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Numerical Value Type )|38 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Single correct Answer Type (Archives) JEE Main|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Multiple Correct Answer Type)|22 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma,delta are the four solutions of the equation tan(theta+pi/4)=3 tan 3theta. No two of which have equal tangents, then the value of tan alpha+tan beta+tan gamma+tan delta=

The general solution of the equation tan2theta tan3theta=1 is

If alpha, beta, gamma, delta satisfy the equation tan(x+(pi)/(4))=3 tan3x , then tanalpha+tanbeta+tangamma+tandelta is equal to :

If alpha+beta=pi/4 then (1+tan alpha)(1+tan beta)=

If alpha and beta are roots of the equation a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If alpha and beta are acute such that alpha+beta and alpha-beta satisfy the equation tan^(2)theta-4tan theta+1=0 , then (alpha, beta ) =

(1+tan alpha tan beta)^2 + (tan alpha - tan beta)^2 =

If tan alpha, tan beta, tan gamma are the roots of equation x^3 - 3ax^2 + 3bx - 1 =0 , find the centroid of the triangle whose vertices are (tan alpha, cot alpha), (tan beta, cot beta) and (tan gamma, cot gamma) .

If alpha+beta=pi/(4), then (1+"tan"alpha)(1+"tan"beta) is

If tan alpha =m/(m+1) and tan beta =1/(2m+1) , then alpha+beta is equal to

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Linked Comprehension Type)
  1. If sin alpha=A sin(alpha+beta),Ane0, then The value of tan alpha is

    Text Solution

    |

  2. If sin alpha=A sin(alpha+beta),Ane0, then The value of tan beta is

    Text Solution

    |

  3. If sin alpha=A sin(alpha+beta),Ane0, then Which of the following is ...

    Text Solution

    |

  4. If alpha,beta,gamma,delta are the four solutions of the equation tan(t...

    Text Solution

    |

  5. If alpha, beta,gamma are the solutions of the equation tan (theta+(pi)...

    Text Solution

    |

  6. If alpha, beta,gamma,delta are the solutions of the equation tan (thet...

    Text Solution

    |

  7. sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of...

    Text Solution

    |

  8. sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value ...

    Text Solution

    |

  9. sin alpha+ sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value ...

    Text Solution

    |

  10. To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8p...

    Text Solution

    |

  11. To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8p...

    Text Solution

    |

  12. To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8p...

    Text Solution

    |

  13. In a Delta ABC, if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin...

    Text Solution

    |

  14. In a Delta ABC, if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin...

    Text Solution

    |

  15. In a Delta ABC, if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin...

    Text Solution

    |

  16. If the angles alpha, beta, gamma of a triangle satisfy the relation, ...

    Text Solution

    |

  17. If the angles alpha, beta, gamma of a triangle satisfy the relation, ...

    Text Solution

    |

  18. A line OA of length r starts from its initial position OX and traces a...

    Text Solution

    |

  19. A line OA of length r starts from its initial position OX and traces a...

    Text Solution

    |

  20. A line OA of length r starts from its initial position OX and traces a...

    Text Solution

    |